Manila, Philippines at night
Photo: Flickr (jopetsy)

How the Philippine Grid Could Achieve 30%—or Even 50%—Renewable Energy by 2030

By National Renewable Energy Laboratory

How would the addition of renewable energy affect power system operations in the Philippines? The U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) recently released a report that addresses this question, Greening the Grid: Solar and Wind Integration Study for the Luzon-Visayas System of the Philippines. The study, published through a project sponsored by USAID and the Philippine Department of Energy, analyzes the power system of the Philippines’ Luzon-Visayas island groups, and the implications of achieving 30% or 50% renewable energy penetration by 2030.

According to the report, even the 50% goal is technically viable. In fact, the study didn't find a technical limit to renewable energy penetration even at these high levels. The modeled Luzon-Visayas system can balance—at all hours of the year—the high renewable energy scenarios for 2030.

The study highlights five key findings:

  1. Renewable energy targets of 30% and 50% are achievable in the power system that is planned for 2030. Achieving these high renewable energy targets will likely involve changes to how the power system is operated.
  2. System flexibility will contribute to cost-effective integration of variable renewable energy.
  3. Achieving high levels of solar and wind integration will require coordinated planning of generation and transmission development.
  4. Strategic, economic curtailments of solar and wind energy can enhance system flexibility.
  5. Reserve provision may become an issue regardless of renewable energy penetration. Additional qualified reserve-providing facilities, including from solar and wind generators and/or enhanced sharing of ancillary services between the Luzon and Visayas interconnections will likely be needed.

The grid integration study uses a production cost model, called a security constrained unit commitment and dispatch model, to understand the impacts of several renewable energy penetration scenarios. For each scenario, the production cost model simulated hourly electric generation based on variable costs under representative weather, load, and outage conditions, while adhering to the physical constraints of the power system. The model provides quantitative insights related to common challenges with increasing renewable energy generation in a power system, namely: renewable energy curtailment (i.e., the reduction in the output of solar or wind generators from what they would otherwise be able to generate given available resources), thermal fleet flexibility, reserve provision, and transmission congestion at different annual penetration levels and siting strategies for solar and wind.

The study also assumes that additional generation and transmission capacity will be developed. Those assumptions are based on the official power sector development plans, which represent significant expansion beyond the infrastructure that exists today.

These results are based on a collaborative and stakeholder-driven process. Over the course of the 18-month study, staff from the five agencies of the modeling team met bimonthly to review and analyze model inputs and outputs. In addition, a Technical Advisory Committee convened by the Philippine Department of Energy and USAID and consisting of representatives from the public and private sectors met periodically to provide oversight and input to the modeling team on the most important questions and assumptions to address in the study. These stakeholder engagement efforts created ownership of the study among the Philippine organizations involved in power sector planning and operation and contributed to new human capacity to continue to plan for higher levels of variable renewable energy in the Philippines.

Learn more about the study by reading the full report.

“Greening the Grid: Solar and Wind Integration Study for the Luzon-Visayas System of the Philippines” was produced by a modeling team with representatives from NREL, the Philippine Department of Energy, the Grid Management Committee, the National Grid Corporation of the Philippines, and the Philippine Electricity Market Association.

This blog was originally published by the National Renewable Energy Laboratory (NREL). 

Country
Philippines
Sectors
Energy, Integration
Strategic Objective
Adaptation, Integration
Topics
Clean or Renewable Energy, Grid Integration, Private Sector Engagement
Region
Asia

Related Resources

View All Resources about
Document

Climate Finance Roadmap Template

More on the Blog

Did you miss the Climatelinks February newsletter? Here's a recap of the February ‘Climate Finance’ theme.
Sustainable fishing as means to protect reef areas and coastal ecosystems in Masinloc, Zambales
PERU-Hub is a dynamic research and innovation center that explores advanced technologies in climate resilience, crop diversification, and food production to improve the livelihoods of rural farmers in Peru.
Peruvian couple show their coffee that grows among shade trees
The USAID Exploratory Programs and Innovation Competitions (EPIC) team and EnCompass are thrilled to announce a new mechanism to propel innovative solutions into action: the Innovative Design, Execution, and Acceleration Support (IDEAS) Activity.