Using Parametric Insurance to Reduce Climate Risks of Renewable Energy Resources

October 1, 2020

Santiago Enriquez, Abt Associates
Álvaro Núñez, Munich Re Trading
Sebabrata Sarkar, Swiss Re America
Moderator: Pablo Torres, Crown Agents USA

This presentation was made possible by the support of the American People through the United States Agency for International Development (USAID) and was prepared by Crown Agents-USA and Abt Associates for the Climate Economic Analysis for Development, Investment, and Resilience (CEADIR) Activity. The authors’ views do not necessarily reflect the views of the United States Agency for International Development (USAID) or the United States Government.
Pablo Torres

- CEADIR Chief of Party, Crown Agents USA
- Over 15 years of international development experience
- Analyst for the Climate Investment Funds in 2013-2014
- Master of Environmental Management from Yale School of the Environment
AGENDA

Welcome and introduction
 Pablo Torres, Crown Agents USA

CEADIR’s parametric research in Central America
 Santiago Enriquez, Abt Associates

Worldwide parametric applications and best practices
 Sebabrata Sarkar, Swiss Re

Industry insights and use cases from Latin America
 Álvaro Núñez, Munich Re Trading

Q&A Forum
Santiago Enriquez

• Senior Climate Change and Environmental Specialist at Abt Associates
• More than 18 years of experience designing and implementing clean energy, sustainable landscape, and environmental projects
• Managed $2.6 million Technical Assistance to Mobilize Clean Energy Investment in Central America
• Master’s in Public Policy from Harvard University
• In 2017, CEADIR completed 48 interviews in El Salvador, Guatemala, Honduras, and Panama
 • 20 RE companies (many owned multiple renewable electric power facilities).
 • 14 banks
 • Three RE business associations
 • Two insurance associations
 • Two banking associations
 • Four insurance companies
 • Three regulatory agencies
• Interviewed RE companies in Panama represented 62% of installed capacity, the highest among the four countries
RESOURCES AVAILABILITY FOR ELECTRIC POWER

- Hydropower, solar and wind power are intermittent resources subject to daily, seasonal, and annual variability in electricity generation.
- Weather variability can cause major fluctuations in the amount and timing of electricity generation, affecting
 - Revenues
 - Contract penalties
 - Capacity to repay loans or other financing and operating costs.
- Cash flow fluctuations can affect ability to obtain financing by increasing credit risks.
- Climate change is expected to increase the frequency and magnitude of droughts and extreme rain events at the global level
 - Effects in specific locations are difficult to predict.
WEATHER AND CLIMATE RISKS FOR HYDROPOWER, WIND POWER, AND PHOTOVOLTAICS

<table>
<thead>
<tr>
<th>Type of Risk</th>
<th>Hydropower</th>
<th>Wind Power</th>
<th>Photovoltaics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive flows</td>
<td>High rainfall or river flows damage dams, catchments, engine house, canals, roads, or other physical works</td>
<td>• High winds damage turbine blades or towers
• High rainfall or other precipitation causes landslides or floods that damage turbines, towers, roads, or distribution lines</td>
<td>High rainfall or other precipitation causes flooding or landslides that damage panels, structures, roads, or distribution lines</td>
</tr>
<tr>
<td>Deficit flows</td>
<td>• Low water levels in run-of-river or reservoir systems reduce electricity generation and sales
• Competition with other users for river water decreases the volume available for power generation or pumped storage</td>
<td>Insufficient wind reduces electricity generation and sales</td>
<td>Insufficient solar flux reduces electricity generation or sales</td>
</tr>
</tbody>
</table>
WEATHER AND CLIMATE RISKS FOR RENEWABLE ENERGY POWER IN CENTRAL AMERICA

- Climate change is expected to increase average and maximum local temperatures in Central America.
- It is more difficult to estimate the effects of global warming on precipitation and winds than on temperatures.
- Global warming may increase rainfall in some areas and decrease it in others.
- Climate change is also likely to increase the frequency of extreme weather events and affect timing and duration of dry and rainy seasons.
PROJECTED CHANGES IN LAND TEMPERATURES AND PRECIPITATION IN CENTRAL AMERICA THROUGH 2100

Source: Hewitson et al. 2014
PURPOSE, CHARACTERISTICS AND DESIGN OF PARAMETRIC INSURANCE

• Provides policyholders a predefined, fixed amount of money when insufficient or excessive RE resource flows reach an agreed threshold as documented in standard, available local data on rainfall, wind, or solar flux

• May specify several payment amounts associated with different levels of deficits or excessive RE resources

• Can be less expensive than insurance based on actual assessed damages because it eliminates the administrative costs and litigation potential of the claims adjustment process
ILLUSTRATIVE EXAMPLE OF PARAMETRIC INSURANCE FOR LARGE-SCALE HYDROPOWER

• Assumptions
 • Three weather stations located in or near reservoir-based hydropower system’s river basin provide data that are averaged and correlated with historical satellite information
 • 96 percent correlation between rainfall and hydroelectric generation
 • Hydropower capacity of 100 MW per hour in the absence of a drought
 • 95 percent capacity use rate for 24 hours per day
 • Wholesale electricity price of $0.10/KWh
ILLUSTRATIVE EXAMPLE OF PARAMETRIC INSURANCE FOR LARGE-SCALE HYDROPOWER (2)

- Policy terms
 - One-year policy at a cost of $5,000,000
 - Agreed weather parameter: Total rainfall during the normal six-month dry season
 - Average historical rainfall during the dry season: 900 mm
 - Insurance payout trigger level: Less than 750 mm of rain during the six-month period
 - Payout: $100,000 per mm of rain below the trigger level
 - Exit level: No additional payout beyond the amount for 600 mm if dry season rainfall is below this level
- Payout in a drought year with 720 mm of rain during the six-month critical period
 - Claim: 750 mm (trigger) – 720 mm (actual rainfall) = 30 mm
 - Payout: 30 mm x $100,000/mm = $3 million
 - Exit level payout: (750 mm – 600 mm) x $100,000 = $15 million
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>150</td>
<td>$15,000,000</td>
<td>456</td>
<td>$8,322,000</td>
<td>$23,322,000</td>
<td>$18,322,000</td>
</tr>
<tr>
<td>690</td>
<td>60</td>
<td>$6,000,000</td>
<td>1,026</td>
<td>$18,724,500</td>
<td>$32,966,000</td>
<td>$27,966,000</td>
</tr>
<tr>
<td>720</td>
<td>30</td>
<td>$3,000,000</td>
<td>1,824</td>
<td>$33,288,000</td>
<td>$36,288,000</td>
<td>$31,288,000</td>
</tr>
<tr>
<td>750</td>
<td>0</td>
<td>$0</td>
<td>2,280</td>
<td>$41,610,000</td>
<td>$41,610,000</td>
<td>$36,610,000</td>
</tr>
<tr>
<td>900</td>
<td>0</td>
<td>$0</td>
<td>5,382</td>
<td>$98,221,500</td>
<td>$98,221,500</td>
<td>$93,221,500</td>
</tr>
</tbody>
</table>
Interviewee Perceptions About Changes in Climate Risks (Percent of Interviewees)

<table>
<thead>
<tr>
<th>Perceived Change in Climate Risks</th>
<th>RE Companies (Fewer Than Five Years)</th>
<th>RE Companies (Five to 20 Years)</th>
<th>Banks and Insurance Companies (Up to Five Years)</th>
<th>Banks and Insurance Companies (Five to 20 Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreasing</td>
<td>10%</td>
<td>10%</td>
<td>0%</td>
<td>11%</td>
</tr>
<tr>
<td>Not changing</td>
<td>45%</td>
<td>10%</td>
<td>33.3%</td>
<td>0%</td>
</tr>
<tr>
<td>Increasing</td>
<td>30%</td>
<td>70%</td>
<td>44.4%</td>
<td>61%</td>
</tr>
<tr>
<td>Do not know</td>
<td>15%</td>
<td>10%</td>
<td>22.2%</td>
<td>28%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
ANNUAL WILLINGNESS TO PAY FOR PARAMETRIC INSURANCE (PERCENT OF INTERVIEWEES)

- Less than $15,000: 29%
- $16,000-$25,000: 47%
- $26,000-$50,000: 24%
• Some RE company interviewees expressed interest in parametric insurance policies that covered periods longer than one year to reduce uncertainty about their ability to insure resource availability risks and decrease the cost.

• Three-quarters of the interviewed RE companies would consider buying a group policy to reduce the costs of parametric insurance.

• Twelve of 18 bank and insurance company interviewees were willing to consider offering, encouraging, or requiring parametric insurance for their RE clients.

• Approximately 39 percent of the bank and insurance company interviewees expressed interest in selling their clients parametric insurance from other companies on a commission basis.

• All RE industry association interviewees confirmed interest in bundling parametric insurance for their members on a fee or commission basis.
Sebabrata Sarkar

• Special Lines Innovation Senior Project Lead, Swiss Re America
• Supports global teams to develop parametric and non-parametric products for engineering and agricultural projects
• Before Swiss Re, worked with Commodity Derivative Exchanges in India
• MBA from Indian Institute of Management – Ahmedabad
SUMMARY

- Product adaptability
- Regulatory considerations
- Financial distribution
- Market awareness
PRODUCT DESIGNS CAN BE ADAPTED BASED ON LOCAL DATA AVAILABILITY *

<table>
<thead>
<tr>
<th>Item</th>
<th>Weather Station</th>
<th>Satellite/ Modelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis risk</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Data availability</td>
<td>Nearby station with data for required parameter may not be available</td>
<td>Data available for all latitudes and longitudes, starting at grid size of 0.01° x 0.01°</td>
</tr>
<tr>
<td>Data gaps/errors</td>
<td>Frequent (Quality controlled data available from Licensed Data Providers)</td>
<td>Rare (Interpolated/modelled)</td>
</tr>
<tr>
<td>Data access</td>
<td>Easy to Complex (Local government permissions may be required)</td>
<td>Easy (Open source options available)</td>
</tr>
</tbody>
</table>

* Products can be offered based on actual site data as well
PARAMETRIC CAN BE COMBINED WITH OTHER COVERAGES TO ADDRESS LOCAL NEEDS

1. Pre-Project Risks

2. Construction Risks

3. Weather Resource

4. Plant Performance

5. Yield Risk

6. Market Risk

7. Political/Regulatory Risks

Traditional Non-Eng. Policies:
- Marine (Cargo)

Traditional Eng. Project Policies:
- CAR, EAR, DSU/ALoP, TPL

Non-Traditional Eng. Policies:
- Parametric Weather Covers

Traditional Eng. Operational Policies:
- MB, EEI, MLoP

Non-Traditional Eng. Policies:
- Performance Warranty Insurance

Traditional Non-Eng. Policies:
- Property, BI, TPL

Non-Traditional Eng. Policies:
- Yield Insurance

Non Insurance Solutions:
- PPAs, OTC Hedges

Bespoke Insurance Solutions:
- Revenue Covers

Bespoke Insurance Solutions:
- Political Risk, Counter-party Credit Risk

Example:
Solar production shortfall covers insufficient solar radiation + performance
PRODUCT DESIGN MUST CONSIDER LOCAL INSURANCE REGULATIONS

1. Is there a derivative versus insurance distinction?
2. Accounting treatment of insurance premium and claim
3. Many countries do not have clear regulations (e.g. Insuralex member study on Panama)*
4. Adding a second indemnity trigger can be considered in absence of clear guidelines*

* The information in this slide are personal opinion of the author, and Swiss Re does not accept any responsibility for its accuracy or comprehensiveness or its updating. Insurers would solely be responsible for all due diligence when it comes to regulatory approval of a new parametric product, but Swiss Re can always support insurers in these discussions.
PARAMETRIC CAN IMPROVE RENEWABLE ENERGY PROJECT FINANCIAL VIABILITY

1. By reducing weather-resource uncertainty, cash flows can be projected with higher levels of confidence
2. Banks and financial institutions can be risk aggregators, reducing average cost of coverage
CREATING AWARENESS IS KEY

1. Client education needs to be driven by insurers
2. Re-insurers can support local insurers to build experience and skills
3. Policy environment needs to be favourable for insurance penetration (e.g. insurers’ involvement at International Solar Alliance)
Álvaro Núñez

- Director of Origination for Latin America, Munich Re Weather and Commodity Group
- Has worked in underwriting and business development with the corporate reinsurance division in London, New York, and San Francisco
- Specialized in developing insurance solutions for renewable energy, most recently parametric solutions to mitigate losses from non-catastrophic weather events
Part of the Weather and Commodity group within the Capital Partners Division.

Two hubs, Houston and Zurich, cover our global operations.
MTRL BUSINESS APPROACH

• Provide risk management products to corporate clients worldwide
 • Allow clients to mitigate economic losses associated with non-catastrophic weather events (e.g., excess/insufficient temperatures, precipitation, and/or wind)
 • Typically structured as derivative contracts but can be structured as insurance contracts
 • Derivative is a contract of differences, with mathematical objectivity, designed to absorb an exact portion of exposure. It is not an indemnity contract as an insurance contract, so there is no need to prove a loss. Derivatives follow a generic framework put in place by the ISDA, but it is regulated by local authorities. The ability to transact depends on local derivative laws.

• Business in virtually all sectors directly/indirectly exposed to weather
 • Energy industry is exposed to weather on demand and supply side
 • Construction industry suffers in cold winters and rain
 • Tourism industry suffers from lack-of-snow, lack-of-sun and rain
 • Agroindustry suffers from weather-induced yield shortfalls (e.g., droughts)
BASED ON RISK CLASS, TWO MAIN PRODUCT TYPES

• Weather risk management products
 • Pay counterparty if realized weather falls outside established range
 • Can be based on related temperatures, precipitation, solar irradiation or wind
 • Counterparty could also face demand risk from mild winter/cool summers

• Weather-contingent commodity products
 • Combining volumetric risk and price risk
 • Benefit counterparty if both realized weather and price of related commodity fall outside established range
 • Available in Australia, European Union, Japan and United States
OPERATIVE WEATHER INDEX

<table>
<thead>
<tr>
<th>Cumulative Temperature:</th>
<th>Precipitation and streamflow:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Degree Days (HDD) in winter</td>
<td>Cumulative precipitation</td>
</tr>
<tr>
<td>Cooling Degree Days (CDD) in summer</td>
<td>Cumulative rain days</td>
</tr>
<tr>
<td>Composite Weather Variable (CWV) incl. wind chill</td>
<td>Reservoir level</td>
</tr>
<tr>
<td>Frost days</td>
<td></td>
</tr>
<tr>
<td>Cumulative average temperatures</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lack-of-Wind:</th>
<th>Lack-of-Sun:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative wind</td>
<td>Global radiation</td>
</tr>
<tr>
<td>Cumulative modeled wind power generation</td>
<td>Sunshine duration</td>
</tr>
</tbody>
</table>
WEATHER RISK MANAGEMENT: STRUCTURE EXAMPLES

• Options (puts and calls), swaps, caps, floors, and collars are common derivative structures
 • Puts are common structure for insurance parametric contracts
• Example of a put structure
 • Hedging structure could be with respect to rainfall exposure
 • Counterparty could be hydroelectric generator willing to hedge financial impact of low precipitation and low streamflow
 • Put structure will provide a floor on amount of average rainfall (mm) or river streamflow
 • Weather and Commodity group will pay out if rainfall or streamflow drops below certain level
• Contracts are indexed to publicly available weather data
• Contracts are typically “seasonal”
 • Terms of up to 12 months
 • Preferable term is 1-3 years
 • 3-5 year term available for weather-indexed structures
MTRL IN LATIN AMERICA

• In Latin America since early 2010s
• Energy and agriculture industries core to strategy
 • energy industry focuses on hydroelectric, wind, and solar generation
• Also engages with construction, municipalities, exploration and mining
• Weather transactions in Latin America, including Chile and Colombia
• Current pipeline includes Brazil, Guatemala, Mexico, Peru, and Uruguay
MTRL IN LATIN AMERICA

• Weather and Commodities group can structure solutions as derivative contracts or as parametric re-insurance contracts
• Munich Re issues reinsurance licenses across the region to cover non-catastrophic weather events
 • With support of subsidiary New Reinsurance Company Ltd. (NewRe),
• Building business ecosystem with power generators, energy distributors, energy traders, (re)insurance brokers, insurance companies, financial institutions, and consulting companies
FOLLOW UP

• Webinar recording and presentation will be shared with all registrants
• Report available at https://www.climatelinks.org/resources/parametric-insurance-renewable-electric-power-producers-central-america
• Access previous CEADIR discussions and resources on our Climatelinks Resource Page.
• Additional questions?
 • Pablo Torres: ptorres@crownagents.com
 • Santiago Enriquez: Santiago_Enriquez@abtassoc.com
 • Álvaro Núñez: Alvaro.Nunez@mrtl.com
 • Sebabrata Sarkar: Sebabrata_Sarkar@swissre.com