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EXECUTIVE SUMMARY 

This report outlines the results of a study comparing historical rainfall and temperature data with 

malaria incidence. and explores the future risks from a warming climate for malaria burdens in 

Malawi. The study provides country-specific insights that contribute to the growing knowledge 

base of causal links between weather, climate, and malaria in sub-Saharan Africa.  

 

Malaria control is a long-standing governmental priority, and vector control has been a 

cornerstone of the government’s efforts. Within the Health Sector Strategic Plan II (2017-2022), 

the country’s fourth strategic plan for malaria, Malaria Strategic Plan (MSP) 2017-2022, aims to 

reduce malaria incidence by at least 50 percent from a 2015 baseline of 386 per 1,000 

population to 193 per 1,000, and malaria deaths by at least 50 percent from 23 per 100,000 

population to 12 per 100,000 population by 2022. Understanding how, when, and under what 

circumstances climate variability and change impact health outcomes could offer insights on 

how to achieve these goals under a changing climate. 

 

As in many countries in Africa, the scientific knowledge describing the health risks of weather, 

climate variability, and climate change needs to be strengthened in Malawi. Malawi’s National 

Communication to the United Nations Framework Convention on Climate Change and the 

National Adaptation Program of Action recognize that climate change will bring about health 

impacts but do not elaborate on the nature or distribution of these impacts. Improved knowledge 

of current associations between malaria, weather, and climate is needed to formulate evidence-

based policies and programs. At the same time, there is an increasing call for the establishment 

of early warning systems informed by in-country research findings. This presents an opportunity 

to improve the health of Malawi’s communities by better understanding the role that weather 

and climate play in health, particularly for infectious diseases like malaria. 

 

OBJECTIVE OF THE STUDY 

The principal objective of this work is to build a scientific knowledge base to support informed 

decision-making and investments in the malaria elimination efforts in Malawi. The findings will 

help to shape the Ministry of Health’s (MoH) preparedness and response to emerging climate 

risks. To achieve this objective, the relationship between climate and malaria was examined 

using current weather, climate, and health data.  

 

STUDY METHODOLOGY 

For this study, two separate, related analyses were conducted. A statistical analysis of climate 

and malaria was conducted at the regional scale, dividing the country intofive geographic 

regions with similar climate parameters including:  

• Central East (Region) – Dowa, Kasungu, Nkhotakota, Ntchisi, Salima (Districts) 

• Central West – Dedza, Lilongwe, Mchinij, Ntcheu (Districts) 
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• North – Chitipa, Karonga, Likoma, Mzimba, Nkhala Bay, Rumphi (Districts) 

• South East – Balaka, Blantyre, Machinga, Mangochi, Mulanje, Phalombe, Zomba 
(Districts) 

• South West – Chikwana, Chiradzulu, Mwanza, Neno, Nsanje, Thyolo (Districts) 

 

Historical weather data (temperature and rainfall), matched with malaria incidence data, were 

analyzed to correlate weather and malaria incidence for each region. A separate climate 

analysis was conducted for Malawi’s three climatic zones, examining both historical weather 

data and using downscaled climate projection data to predict future malaria incidence. Together, 

these analyses provide the basis for the study insights and recommendations. 

  

WEATHER AND CLIMATE VARIABILITY IN MALAWI 

Analysis of climate trends allows us to 1) understand that historical climate variability and change 

may have contributed to malaria incidence, and 2) past trends may reveal a climate change 

“fingerprint,” allowing us to better predict malaria incidence in the future. 

 

Current daily rainfall and temperature data were sourced from WATCH Forcing Data ERA Interim 

(WFDEI), which is the only dataset that provides both precipitation and temperature at a daily 

scale over the southern African region. Additionally, the WFDEI provides a long and relatively up-

to-date record and their ability to capture reality on the ground (skill of the variables) are consistent 

both through space and time which makes it suitable for trend analysis at the regional level.  

 

The following key messages on rainfall and temperature from these data are summarized in Table 

ES1. 

Table ES1: Climate trends in Malawi with respect to temperature and rainfall 

OBSERVED CLIMATE TRENDS  

Parameter Observed climate trends 

Temperature 

 

• Mean, maximum, and minimum temperatures all rose between1979 and 2016, by 
approximately 0.53 to 0.60°C. 

• Trends in daily maximum and minimum temperatures are similar to daily mean 
temperature in terms of trend and magnitude of change, pointing to an increase of 
0.16 to 0.17°C per decade across all regions. 

•  Higher elevation areas of Northern Malawi may become marginally or moderately 
suitable for malaria because of increasing temperatures, where temperatures may 
have been too cool several decades ago. 

Rainfall 

 

• While there appear to be reductions in annual rainfall totals, these were not statistically 

significant results.  

• While the number of rain days per year appears to be increasing, these were not 

statistically significant results.  

• The country receives ample rainfall, so it is unlikely that malaria is moisture-constrained 

in Malawi and, therefore, historical rainfall trends or variability would not be strong 

drivers of observed changes in malaria prevalence. However, seasonality of malaria 

may change in drier areas alongside changes in weather patterns.   

• The large interannual variability shows that both droughts (1991/92, 1993/94) and 
floods (1997 and 2003) occur in Malawi.  
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CLIMATE AND MALARIA INCIDENCE IN MALAWI 

The relationship between malaria transmission and climate is complex: climate can impact the 

transmission of malaria by affecting the malaria parasite life cycle, the mosquito’s life cycle and 

behavior, the human host’s vulnerability, or any combination of the three. Predicting how 

changes in precipitation or temperature might affect transmission geographically requires 

detailed knowledge about a complex set of other drivers involved in transmission, including the 

number of breeding sites, vector species distribution, and infection rates, many of which are not 

yet fully understood or directly impacted by temperature and precipitation. 

 

This report examines the relationship between (a) historical weather data (average monthly 

rainfall and average minimum monthly temperature) and (b) monthly reported total cases for 

each of Malawi’s five regions in Malawi from January 2010 to September 2016. Malaria 

seasonality is very similar across all five regions, with year-to-year variability. All regions have 

the lowest malaria incidence in August of each year. Most regions exhibit strong seasonality, 

with approximately 2–3 times the number of cases in the peak of the season, January, as 

compared with August. 

 

HISTORICAL CLIMATE AND MALARIA ASSOCIATIONS 

Key findings for the analysis comparing temperature, rainfall, and malaria incidences are 

presented below. 

• For each 1 mm increase in mean daily precipitation, childhood (under 5) malaria 
increased in the South East by 1.7 percent and South West by 2.3 percent, and in the 
North, all one month later.  

• For each 1°C increase in daily minimum temperatures, malaria cases increase in the 
South East by 3.8 percent 2 months later. 

• For malaria in people over 5 years of age in the South East and South West, each 1 mm 
increase in daily mean precipitation increases malaria incidence by 1.6 percent with a 2-
month lag. The increase for the South West is 3.3 percent.  

 

CLIMATE CHANGE IN MALAWI 

An ensemble of 19 Regional Climate Model (RCM) projections from the Coordinated Regional 

Climate Downscaling Experiment (CORDEX) over the African Domain is used to examine how 

climate is projected to change across Malawi under two Representative Concentration 

Pathways: (RCP) 4.5 and 8.5 are presented. RCP 8.5 represents a weak mitigation future, while 

RCP 4.5 represents a much more aggressive mitigation future though still not in line with the 

2016 Paris Agreement objectives, which aims to limit temperature increase to 1.5ºC. Key 

insights from this analysis are noted below. 

 

TEMPERATURE 

• Daily and yearly temperatures (average, maximum and minimum) will rise and these 
increases are statistically significant even as early as the 2020s. 

• Average temperatures will increase between 1.5 to 6 ºC by 2100 under all scenarios 
evaluated.  
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• Maximum temperatures are projected to rise between 1-7 ºC by 2100. 

• The warming rate is similar across all regions with no one region projected to warm 
faster than another. 

 
RAINFALL 

• Most models project a decrease in the number of rain days per year before the 2050s, 
representing an opposite direction of change in the trends observed. 

• Projected changes in total and monthly rainfall are uncertain, and there is no agreement 
in the sign of the change between models, some show statistically significant increases 
and others statistically significant decreases. 

• Seasonally, most models show a statistically significant reduction in rain days, with the 
worst-case scenario (RCP 8.5) pointing to a potentially later start in the rainy season 
across all regions in Malawi. 

 

MALARIA IN A HOTTER CLIMATE IN MALAWI 

Areas of malaria suitability were mapped in a model combining future temperature change 
projections and current knowledge about the life cycles of malaria-carrying mosquitoes and the 
malaria parasite. Malaria suitability was examined across two future time periods: the 2030s 
(representing the period between 2015 and 2044), and the 2060s (representing the period 
between 2045 and 2074). Details of the methodological approach are available in the Shifting 
Burdens, Malaria Risks in a Hotter Africa technical report. Key messages from this analysis are 
noted herein: 
 

• An estimated 14 million people in 2010 were living in areas of risk for 1 or more months 
of transmission suitability in Malawi. Of these, one-third (4.8 million, 35 percent) live in 
areas suitable for seasonal (7-9 months) transmission. 

• In all projected future scenarios, the largest portion of people at risk (ranging 46-77 
percent) are at seasonal (7-9 months) risk, suggesting a shift toward more seasonal 
transmission risk from the baseline.  

 

INSIGHTS AND RECOMMENDATIONS 

Addressing the changing risk profile of malaria due to temperature increases combined with 

other drivers will require modifying current interventions and programs, and potentially 

implementing new programs, that can adapt and respond to changing climate conditions. With 

these challenges come opportunities for improving observations, surveillance, and responses, 

including detailed geographic targeting, optimizing strategies (i.e., finding the right combination 

of vector and case management), and aligning interventions to changing seasonality.  

 

MEETING ELIMINATION TARGETS 

Eliminating malaria is the goal of all development partners working in Africa (WHO 2015). 

Understanding how temperature may change the seasonality of malaria in Southern Africa, 

particularly for new areas at risk of malaria transmission or areas where the length of the 

season may shorten or extend, can inform malaria programs and policy and help reach the goal 

of elimination. In areas where the months of malaria suitability decrease, opportunities will arise 

to focus resources on making surveillance and response systems increasingly sensitive and 

https://www.climatelinks.org/sites/default/files/asset/document/2019_USAID_ATLAS_Shifting%20Burdens.pdf
https://www.climatelinks.org/sites/default/files/asset/document/2019_USAID_ATLAS_Shifting%20Burdens.pdf
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focused to identify, track, and respond to malaria cases and any remaining transmission foci 

(e.g., infected mosquitoes or affected patients). Elimination efforts informed by these analyses 

could better target resources to reduce the potential burden of additional cases through timely 

treatment and preventive measures to avoid disease spread in exposed populations, such as 

the distribution of bed nets or indoor residual spraying. 

 
ADAPTING TO CHANGING EPIDEMIOLOGY AND INCORPORATING NEW TOOLS 

There are many examples across sub-Saharan Africa where investments have improved 

malaria control strategies. These gains, however, could be compromised if future investments 

do not consider the role of rising temperatures in changes to epidemiology. This analysis offers 

critical insight with respect to these risks, and especially how current management and control 

interventions may need to be reviewed and revised to account for likely changes in malaria 

incidence. This information offers an opportunity to lengthen the investment timeframe 

(seasonal to year-round, or vice versa), optimize vector control, and improve case management, 

by providing the evidence base to support these actions. Targeted and concentrated 

surveillance at the edge of malaria’s range, for example, presents an opportunity to focus on 

potential epidemic outbreaks as they happen and can reduce the risk of new outbreaks. 

 

IMPROVING A COUNTRY’S CAPACITY FOR COLLECTING AND USING INFORMATION 

Understanding how rising temperatures could impact vector ranges, and thus have the potential 

to alter disease dynamics, is an important step to build the knowledge base to evaluate the 

impact of climate on malaria incidence and to inform investments.  

 

This analysis indicates that as temperatures rise, even within the next 11 years (by the 2030s), 

important changes are anticipated in Anopheles transmission suitability. Importantly, 

temperature-driven changes in vector dynamics are themselves mediated by direct and indirect 

environmental and societal factors, such as changes to ecosystems and land use that may 

reduce or increase the vulnerability of certain groups to malaria risks.   

 

Public health observatories, many already operational around the world, can analyze health 

data in the context of other climate and environmental parameters (health observatories are 

virtual platforms that can link health systems to weather data). These observatories can pave 

the way for the timely use of remotely derived weather and climate information to inform 

investments and strategies in malaria control.   

 

BUILDING CAPACITY IN HEALTH SYSTEMS 

In order for malaria programming and health services to respond to climate risks, investments 

need to be made in building the skills and capacity of health workers to understand and address 

the health risks posed by climate. These include: 

• Training health workers on the links between health and climate change to improve 
their understanding and increase capacity to address changing climate risks. 
Establishing health early warning systems—as an extension of the analytic work that a 
health observatory can provide—educational and advisory systems for disseminating 
clinical guidelines, and even the guidance offered by community health workers, will all 
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require building awareness of the risks and responses available to address climate 
factors. USAID/AFR, for example, has developed a one-week training course on climate 
and health issues. 

• Leveraging information technology such as GIS (geographic information system) and 
other tools to integrate information from various sectors and sources in order to rapidly 
evaluate the potential risks from specific weather events to a country, region, or health 
post. 

• Streamlining supply chain management, especially in countries where malaria control 
interventions have been successful, to guarantee the delivery of commodities and 
services for remote and mobile populations. 

• Ramping up research on applied, regionally responsive health services for a future of 
climate change. To date, there is a clear lack of service-oriented research to drive 
regional health service development for climate change, with potentially serious adverse 
implications for future control efforts.  

 

STRATEGIC BUDGETING AND EARLY AND TARGETED PLANNING 

One of the core operating principles of many malaria intervention programs and for the 

President’s Malaria Initiative (PMI) is prioritizing high-risk populations for malaria interventions. 

Based on this report, temperature may play a role in putting large percentages of populations 

within countries, and in the region overall, at risk of both seasonal and endemic malaria. 

 

In many instances, information on projected temperature increases is criticized because it 

cannot address immediate disease planning needs. However, much like preventive medicine, 

which aims to promote long-term well-being, planning 10–12 years and even further into the 

future when fighting malaria can save lives and money over the long term and promote 

sustainable elimination efforts. For example, if we know that temperature is likely to increase 

malaria burden in a certain country or region where there is currently little investment to fight 

malaria, including in some Southern Africa countries, an investment in surveillance and 

prevention now could prevent the need for large, immediate, crisis-driven investments in the 

future.   
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BACKGROUND  

Malaria is a serious and sometimes fatal disease caused by a protozoan parasite, Plasmodium, 

that commonly infects certain types of Anopheles mosquitoes that feed on humans. People who 

get malaria are often very ill for several days with high fever, shaking chills, and flu-like illness. 

Left untreated, they may develop severe complications and potentially die. In 2017, an 

estimated 217 million cases of malaria occurred worldwide, compared with 239 million cases in 

2010 (WHO 2018). Most of these cases (92 percent) were in the World Health Organization 

Africa Region (AFRO), with five countries accounting for nearly half of all malaria cases 

worldwide: Nigeria (25 percent), Democratic Republic of the Congo (11 percent), Mozambique 

(5 percent), India (4 percent), and Uganda (4 percent). The ten highest—burden countries in 

Africa reported increases in cases of malaria in 2017 compared with 2016. Worldwide, there 

was no significant progress between 2010 and 2017 in reducing the burden of malaria; the 

number of cases remains at 59 per 1,000 population (WHO 2018). Nevertheless, detection and 

treatment efforts appear to be working to reduce burdens. In 2017, for example, there were an 

estimated 435,000 deaths from malaria globally, compared with 607,000 in 2010 (WHO 2018). 

Children under five years of age are the most vulnerable group, accounting for 61 percent of all 

deaths. AFRO countries accounted for 93 percent of malaria deaths. Over 90 percent of these 

deaths are from the parasite Plasmodium falciparum, the most severe of the five species of 

Plasmodium. 

 

An estimated $3.1 billion was invested in malaria control and elimination globally in 2017, an 

amount slightly higher than for 2016, with nearly three—quarters ($2.2 billion) spent in AFRO 

countries (WHO 2018). Governments of endemic countries contributed 28 percent of total 

funding, with most of this funding invested in national malaria programs. The US was the largest 

international source of malaria financing, providing $1.3 billion (42 percent). About $6.6. billion 

in annual funding is needed to meet targets to reduce malaria deaths and cases by >90 percent 

by 2030 (Patouillard et al. 2017; World Health Organization and Global Malaria Programme 

2015). 

 

Like many countries in Africa, critical knowledge of the health risks associated with climate 

variability and climate change is lacking in Malawi. Although there is general understanding of 

current associations between weather variables and a range of adverse health outcomes—

generally derived from studies conducted in other countries—further knowledge of current risks 

in the Malawi’s regions is needed to formulate evidence-based policies and programs. Working 

from first principles of transmission dynamics of infectious diseases and informed by the current 

literature, this report examines climate effects on malaria in Malawi.  

 

STRUCTURE OF THE REPORT 

Weather and Climate Variability in Malawi provides an overview of the climate and climate 

drivers of Malawi, describing historical variability as well as current trends at a regional scale for 

key parameters such as rainfall and temperature. The climatological analysis coincides with the 
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period for which disease incidence data were available to ensure that the climate data 

adequately capture the climate dynamics of relevance during the same period. 

 

Climate and Malaria Incidence in Malawi explores the causal pathways linking climate to 

malaria in Malawi and examines the relationship between historical health data collected by the 

Ministry of Health (MoH) and satellite-derived rainfall and temperature variables. The goal is 

threefold: to understand the role that historical temperature and rainfall played in disease 

incidence, to explore the role of scientific information in understanding climate and malaria links, 

and to determine whether these relationships are robust and predictable enough to support 

development of an early warning system that could help the health care system respond to 

outbreaks faster.  
 

Climate Change in Malawi examines state of the art projections for climate in Malawi and how 

this will translate into rising temperatures across the country by the 2030s and 2060s. 

 

Malaria in a Hotter Climate in Malawi models how projected rising temperatures will impact 

malaria seasonality across Malawi. 

 

Insights and Recommendations concludes the report with insights and lessons to respond to 

the changing profile of malaria in Malawi as climate continues to change. 
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GEOGRAPHIC SCOPE OF THIS STUDY 

To account for Malawi’s varied climate, malaria data in Malawi is typically divided into five 

regions with similar climate parameters prevailing in each region (Figure 1)., The average 

population for these five regions for the study period is noted in Table 1.   
 

Figure 1: Regions of analysis for historical malaria and climate data 

 

 
Table 1: Regions, number of districts within each region, and average population 

(January 2010 – September 2016_) 

Region 
Number of 
districts 

Average population during 
study period 

Central East 5 2,480,448 

Central West 4 4,098,954 

North 5 3,056,470 

South East 7 4,633,546 

South West 7 1,940,309 
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WEATHER AND CLIMATE 
VARIABILITY IN MALAWI 

INTRODUCTION AND CONTEXT 

This section provides a succinct interpretation of the climate information for use in establishing 

the relationship between weather and malaria in Malawi. Climate data for the country is typically 

divided into Malawi’s three recognized climatological regions based on rainfall characteristics: 

Northern Plateau (blue), Shire Highlands (green), and the Rift Valley (red) (Figure 2). 

 

THE CLIMATE OF MALAWI 

The climate of Malawi is dominated by 

the position of the Inter-Tropical 

Convergence Zone (ITCZ) (which forms 

the boundary between the north-easterly 

monsoon and south-easterly trade 

winds) and the subtropical high-pressure 

belt associated with the descending 

branch of the meridional Hadley 

circulation. The southerly position of the 

ITCZ during the austral summer results 

in the country experiencing a single rainy 

season extending from November to 

April. Dominance of subtropical high-

pressure systems in winter from May to 

September results in dry and often cool 

conditions. Typically, the rainy season 

begins earliest in the south and onset is 

progressively later further north. Rainfall 

distribution is not uniform across the 

 

Figure 2: Regions of climatological analysis 

KEY MESSAGES 

• Mean, maximum, and minimum temperatures all rose between 1979 and 2016 by approximately 0.53 to 
0.60°C over the 35-year period. 

• Three climatological regions in Malawi are recognized based on rainfall: a wetter north, the relatively 
drier Shire highlands and Rift Valley region, and the wet northern plateau. 

• The country receives ample rainfall, so it is unlikely that malaria is moisture-constrained in Malawi and, 
therefore, historical rainfall trends or variability would not be strong drivers of observed changes in 
Malaria prevalence. However, seasonality of malaria may change in drier areas alongside changes in 
weather patterns.   
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Figure 3: Mean annual rainfall (left) and mean annual temperature (right) over Malawi 

country (Figure 3), as local variations in topography and the influence of Lake Malawi contribute 

to some notable spatial variability in its seasonal characteristics.  

 

The country’s three climatological (rainfall) regions differentiate between a wetter north-eastern 

region (the northern plateau) with a mean annual rainfall of 1,369 mm per year, and the drier 

Shire Highlands and Rift Valley region with mean annual rainfall figures of 1031 and 1017 mm 

per year, respectively (Figure 4). In the northern plateau the wettest month is March, whereas in 

the Shire Highlands and Rift Valley the wettest month is typically January ( 

Figure 4).  

 

Temperatures in all regions show hot summers and colder winters with a mean difference 

between summer and winter of about 5°C (Figure 3). The Shire Highlands are generally cooler 

than the other two regions and exhibit less interannual variability in temperature (Figure 5). 

 
 

Figure 4: Rainfall regions based on rainfall climatology for the period 1979-2016.  

 
Note: Each line represents an individual grid box, and the bold black line is the average. 
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Figure 5: Seasonal cycle of temperature for the period 1979–2016 by regions 

 
Note: Each line represents an individual grid box, and the bold black line is the average. 

 

CLIMATE TRENDS 

The analysis of climate trends can be useful in understanding: 

• How climate variables have varied through the past decades as this may help explain 
observed impacts such as increasing malaria incidence or decreasing crop yields. 
However, the links between climate variables and nonclimate variables is often complex 
and involves many nonclimate drivers. Trend analysis should therefore be used as a first 
step in exploring historical changes in climate—sensitive variables. 

• How past trends could exhibit a climate change “fingerprint” that points at projected 
changes into the future. For example, almost all land locations globally have 
experienced a systematic and significant increase in temperature over the past 100 
years. Coupled with knowledge of climate science, climate modeling can be used to 
explain the extent to which these past changes are responses to increasing greenhouse 
gas emissions. The alignment between observed trends and modeled past and future 
trends offers increased confidence in future projected changes. 

 

While temperature trends are relatively easily explained by climate change, trends in 

precipitation- related statistics are often more complex. One important reason is that 

precipitation naturally varies far more from year to year than temperature and many locations 

exhibit not only strong year—to—year variability, but also decade or longer drier or wetter 

periods (e.g. the Sahel drought in the second half of the 20th century). Given a relatively short 

observation record, particularly in developing countries, it is often not possible to determine if a 

linear trend analysis is indicating a long-term systematic precipitation trend possibly driven by 

climate change or is merely a consequence of natural variability. While the data used here cover 

a substantial period of time, i.e., 35 years from 1979-2016, it is difficult to attribute the long-term 

trends in precipitation illustrated in to climate change, as these could also be part and parcel of 

decadal variability in the “tails” of the time series. 
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Interpretation of historical climate trends for precipitation should therefore be cautiously 

conducted where climate variables exhibit high natural variability, and in combination with 

analysis of climate model simulations and projected changes. This allows for judgments to be 

made on the strength of the evidence for a particular long-term change. Where low natural 

variability in the observed precipitation record is evident, and the direction of trend in the 

historical record matches that of the projected direction of change, then it gives us more 

confidence in the long-term projection. 

 

Observed trends to several climate statistics (temperature, rainfall, and the number of “wet 

days”1) of potential relevance to malaria prevalence in Malawi are explored below. Here we 

offer a brief overview of the relative importance of these variables to malaria transmission: 

 

• Temperature is known to be a strong limit on malaria transmission, though the 
dynamics are potentially complex. As such, we include an analysis of mean, maximum, 
and minimum daily temperatures. 

• Total rainfall offers an indication of moisture availability, an important limit on malaria 
transmission.   

• The number of wet days is important because heavy rainfall followed by long dry 
periods may limit moisture availability.   

 

Temperature 

Observed trends in daily mean temperature by region point to an increase in mean daily 

temperatures between 0.53 and 0.6°C over the 35-year period between 1979 and 2016 and are 

statistically significant (Figure 6). Trends in daily maximum and minimum temperatures track 

daily mean temperature in trend and magnitude of change, pointing to an increase of 0.16 to 

0.17°C per decade across all regions (Figures 7 and 8). Interannual variability in the yearly 

averaged maximum temperature record is higher than for the minimum temperature record, 

maximum temperatures tracking more closely to rainfall values, with periods of higher rainfall 

corresponding to lower maximum temperatures. 

 

Anopheles mosquito suitability is constrained by both very high temperatures and very low 

temperatures. Rising temperatures can shift the boundaries between areas of optimal (endemic 

or seasonal) suitability and limited (marginal or moderate) suitability. In particular, rising 

temperatures in the mountainous areas of Western Malawi may allow malaria to occur more 

readily at higher elevations for more months of the year where temperatures may have 

previously been too cool. 

 
  

 

1 Wet Days are traditionally measured by the days with rainfall greater than 1 mm.   
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Figure 6: Yearly mean of daily mean temperature and for the period 1979–2016 

Note: Trends are considered statistically significant when p values (appearing in the legend) are less than 0.05, which 

nominally suggests that the trend is not due to chance but reflects a climate change influence. Where p values are 

greater than 0.05, it is difficult to attribute this to climate change and could be rather a function of natural variability. 

Figure 7: Yearly mean of daily maximum temperature by region for the period 1979–2016 

Note: Trends are considered statistically significant when p values (appearing in the legend) are less than 0.05, which 

nominally suggests that the trend is not due to chance but reflects a climate change influence. Where p values are 

greater than 0.05, it is difficult to attribute this to climate change and could be rather a function of natural variability. 

Figure 8: Yearly mean of daily minimum temperature by region for the period 1979–2016 

Note: Trends are considered statistically significant when p values (appearing in the legend) are less than 0.05, which 

nominally suggests that the trend is not due to chance but reflects a climate change influence. Where p values are 

greater than 0.05, it is difficult to attribute this to climate change and could be rather a function of natural variability. 
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Rainfall 

All three regions show a reduction in total annual rainfall between 1979 and 2016 ( 

Figure 9). However, these trends are not statistically significant, so, while important, it is not 

possible to attribute this trend to climate change. The large interannual variability in the record 

reflects the droughts of 1991/92, 1993/94, as well as the flood years of 1997 and 2003. Trends 

in the number of rain days per year (Figure 10) are positive, suggesting an increase in the total 

number of rain days in all regions. These weren’t statistically significant results, and there is a 

large interannual variability.  

 

The country receives ample rainfall so it is unlikely that malaria is moisture-constrained in 

Malawi, and, therefore, historical rainfall trends or variability would not be strong drivers of 

observed changes in malaria prevalence. However, seasonality of malaria may change in drier 

areas with rising temperatures and increased evapotranspiration. These implications are subject 

to the outcome of the in-depth malaria incidence data analysis in Section III. 
 

Figure 9: Trends in total annual rainfall by region 

 
Note: Trend lines are shown as solid, with interannual variability in dotted lines. The large interannual variability in the record reflects 

the droughts of 1991/92, 1993/94 as well as the flood years of 1997 and 2003. Trends are considered statistically significant when p 

values (appearing in the legend) are less than 0.05, which nominally suggests that the trend is not due to chance but reflects a 

climate change influence. Where P values are greater than 0.05, it is difficult to attribute this to climate change, and could be rather 

a function of natural variability. 

 

Figure 10: Trends in the number of “wet days” (rain days experiencing > 1 mm per day) by region 
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Note: Trend lines are shown as solid, with interannual variability in dotted lines. The large interannual variability in the 
record reflects the droughts of 1991/92 and 1993/94 as well as the flood years of 1997 and 2003. Trends are considered 
statistically significant when p values (appearing in the legend) are less than 0.05, which nominally suggests that the 
trend is not due to chance but reflects a climate change influence. Where p values are greater than 0.05, it is difficult 
to attribute this to climate change and could be rather a function of natural variability. 

 

METHODS OF ANALYSIS 

The WATCH Forcing Data ERA Interim (WFDEI) gridded dataset was used in the analysis 

(Weedon et al. 2014). These data provide observational temperature and rainfall data from 1979 

to 2013. It contains eight meteorological variables at 0.5°C spatial resolution at 3-hourly or daily 

time resolution over the period 1979–2013. The WATCH WFDEI data are derived from the ERA-

Interim climate reanalysis simulations, which are simulations with a global climate model that 

assimilates observations of certain large-scale atmospheric variables. In the process of 

generation of WATCH WFDEI, the underlying reanalysis variables are bias corrected (i.e., 

systematic differences are removed) to observations. In case of rainfall and temperature 

variables, bias correction is done to the Climate Research Unit (Harris 2014) gridded observed 

climate estimate data. The variables examined in this report were: daily precipitation and daily 

minimum, mean, and maximum temperature.   

 

This dataset was selected since it was the only dataset that provided both daily precipitation and 

temperature data over the southern African region. Additionally, the WFDEI provides a long and 

relatively up-to-date record based on ERA-Interim climate reanalysis data and the ability of the 

data to capture reality on the ground (skill of the variables) are consistent through both space 

and time, which makes it suitable for trend analyses at regional levels.  

UNCERTAINTIES 

While it is clear that temperatures will continue to rise across the world as greenhouse gas 

concentrations increase, projecting future climate change is uncertain. The sources of 

uncertainty are wide ranging but primarily involve: 

 

• Natural variability: The climate system varies naturally (not as a result of global warming) 
on wide ranging time scales. Global phenomena such as the El Nino Southern 
Oscillation (ENSO) and others cause significant global and regional temperature shifts 
and regional rainfall changes. Multiyear or even decadal droughts also occur naturally. 
So some shifts in climate, even over multidecade periods, are just due to semirandom 
variability and not climate change. The same is true within climate model simulations of 
future climate. It is impossible to know if a climate model simulation is projecting a 

What is a climate reanalysis dataset? 
 
A climate reanalysis gives a numerical description of the recent climate, produced by combining models with 
observations. It contains estimates of atmospheric parameters such as air temperature, pressure, and wind at 
different altitudes, and surface parameters such as rainfall, soil moisture content, and sea-surface temperature. 
The estimates are produced for all locations on earth, and they span a long time-period that can extend back by 
decades or more. Climate reanalyse generate large datasets that can take up several petabytes of space.  
 
Source: European Centre for Medium-Range Weather Forecasts 2020. 
 

https://www.ecmwf.int/en/research/climate-reanalysis


THE INFLUENCE OF CLIMATE ON MALARIA INCIDENCE IN MALAWI: A RETROSPECTIVE ANALYSIS | 17 

change in rainfall because of global warming or because it randomly simulated a 
particularly dry period. This source of uncertainty varies through time, being very 
dominant in the near future and decreasing into the far future as the changes driven by 
global warming become stronger. See Hawkins (2009) for a useful description. 

• Observational uncertainties: Observations inform model parameters and model 
validation as well as providing baseline references against which to measure climate 
change. In many areas of the world, surface primary observations (weather stations) are 
declining in density and data availability, leading to increased uncertainty. 

 

Of the above sources of uncertainty, natural variability is difficult to model and therefore hard to 

incorporate into the analysis. Observational uncertainties can be reduced through significant 

investment in climate and weather observation platforms as well as promoting open data 

access. Structural (model) and emissions uncertainty can be improved, but reducing the 

uncertainty requires making assumptions and potentially introducing new errors. For example, 

we can assume a single emissions pathway to reduce emissions uncertainty. Or we can attempt 

to identify better or worse climate models and so eliminate them and their associated 

projections from consideration. In some cases, this can reduce the range of projected changes, 

but not always. Regardless, removing models means that we risk not considering the projected 

changes simulated by that model. We need to be confident in our assumptions and comfortable 

with the increased risk of being wrong. 

 

Considering multiple emissions scenarios and as many climate models as possible is a 

conservative and safe starting point. That is the approach we have taken in this analysis by 

drawing on the CMIP5 model ensemble and analyzing both RCP 4.5 and RCP 8.5 emissions 

experiments. 

THE MANY OBSERVATIONAL CLIMATE DATASETS AVAILABLE 

There is not one “best” gridded observed dataset for the southern African region or any region of the world. All 

datasets differ in the number of variables included, their spatial and temporal resolution, the length and period 

of record, and the ease with which the data can be accessed and used. Some datasets are more suitable for 

analysis of how the climate changes over space or time, while others provide a better representation of 

absolute values of the climate. There is always a trade-off, and users needs to select the most suitable dataset 

for their needs. 
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CLIMATE AND MALARIA 
INCIDENCE IN MALAWI 

MALARIA AND WEATHER ASSOCIATIONS 

Environmental variables such as temperature, rainfall, and humidity help determine the 

geographic range of the Anopheles mosquitoes, affect the incidence of malaria by changing the 

duration of the mosquito and parasite life cycles, and influence human, vector, or parasite 

behavior (Gubler et al. 2001). Malaria transmission is also climate-sensitive in that weather 

variables affect the three stages of the malaria parasite life cycle: two stages while in humans 

and one stage in the vector, Anopheles. The causal pathways between weather/climate and 

malaria are complex, as shown in Figure 11. 

 

Temperature, humidity, rainfall, and wind speed affect the incidence of malaria (Figure 12), 

either through changes in the duration of mosquito and parasite life cycles or influences on 

human, vector, or parasite behavior (Parham and Michael 2010). A key parameter is the basic 

reproduction number, called R0, a metric for malaria transmission suitability quantifying the 

expected number of secondary cases generated per infectious human introduced into an 

otherwise susceptible population. The statistical formula to determine the basic reproduction 

model includes temperature and rainfall for R0.  

 
  

KEY MESSAGES 

• Associations between temperature and/or precipitation and cases of malaria can reveal patterns that can be 
used alongside climate data and weather forecasts to provide information about the timing of seasonal 
disease outbreaks. 

• Despite considerable progress and investments in prevention and control, malaria remains a leading cause of 
morbidity and mortality in Malawi. In 2017, there were an estimated 4.3 million cases and 7,100 deaths in a 
population of 18.6 million (WHO 2018). 

• Malaria incidence in the South East/South West increases with normal rainfall, with a 1.6 percent/3.3 percent 
increase in malaria incidence, respectively, with each 1 mm increase in mean daily precipitation, with a 2-
month lag. 

• The results suggest that a combination of temperature and precipitation for the South East and South West 

regions could be used to forecast the timing of malaria outbreaks with at least a 1- to 2-month lead time. 
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Figure 11: The malaria life cycle 

 

 

 
Source: CDC 

 

 
Figure 12: Associations between temperature and rainfall on mosquito populations and Plasmodium species 

dynamics 

 

 
Note: The mean number of mosquitoes per unit area as a function of temperature and rainfall (A); and the estimated 

doubling time of P. falciparum and P. vivax, with high and low referring to vector density values (the number of 

mosquitoes per humans) (B); and the dependence of R0 on temperature for P. falciparum and P. vivax (C) 

Source: Parham and Michael 2010 

 

Understanding these dynamics can increase the efficiency and effectiveness of malaria control 

programs. For example, associations between temperature and/or precipitation and cases of 

malaria can reveal patterns that can be used alongside climate and weather forecasts to provide 
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information about the timing of seasonal disease outbreaks. Further, some recent control tools, 

such as Seasonal Malaria Chemoprevention and RTS,S/AS01 malaria vaccine (see box below), 

need to be deployed in the regions where they are most needed. Understanding how climate 

may impact both number of incidence and the intensity of malaria infection between regions 

within a country is relevant for decision making, especially with limited resources (Greenwood 

2017). 

 

MALARIA IN MALAWI 

Despite considerable progress and investments in prevention and control, malaria remains a 

leading cause of morbidity and mortality in Malawi. In 2017, there were an estimated 4.3 million 

cases and 7,100 deaths in a population of 18.6 million (WHO 2018). Malaria transmission 

occurs throughout the year in most areas and the entire population is at risk of the disease. The 

2017 Malaria Indicator Survey reported that 24 percent of children 6–59 months of age tested 

positive for malaria by microscopy; the rate varied from 11 percent in the North region to 26 

percent in the Central East, Central West, South East, and South West regions. This was 

despite increasing trends in access to and use of insecticide treated nets (ITNs). Overall, 68 

percent of children under the age of five slept under an ITN the night before the survey (regional 

range: 62–72 percent) and within two weeks before the survey, 96 percent with fever were given 

an antimalarial drug. Annual malaria prevalence in Malawi decreased from 33 percent in 2014 to 

24 percent in 2017. In children under the age of 5, prevalence decreased from 43 percent in 

2010 to 24 percent in 2017. In 2017, Malawi accounted for 2 percent of the global cases of 

malaria and 10 percent of all cases within East and Southern Africa. 

 

Malaria is now the sixth leading cause of death in Malawi, after HIV/AIDS, neonatal disorders, 

lower respiratory tract infections, tuberculosis, and diarrheal disease (IHME 2019). Malaria 

ranked third in 2007. Malaria is the fourth leading cause of premature deaths.2  

 

 

2 Premature deaths occur before the age that is considered “natural,” in this case, 75 years of age. 

RECENT MALARIA CONTROL TOOLS 

• Seasonal malaria chemoprevention is defined as the intermittent administration of full treatment 
courses of an antimalarial medicine to children in areas of highly seasonal transmission during the 
malaria season. The objective is to prevent malarial illness by maintaining therapeutic antimalarial drug 
concentrations in the blood throughout the period of greatest malarial risk. 

• RTS,S/AS01 (RTS,S) is the world’s first malaria vaccine that has been shown to provide partial 
protection against malaria in young children. The vaccine acts against Plasmodium falciparum, the 
deadliest malaria parasite globally and the most prevalent in Africa. The vaccine has been 
recommended by WHO for pilot introduction in selected areas of 3 African countries. It will be 
evaluated for use as a complementary malaria control tool that could be added to (and not replace) the 
core package of WHO-recommended preventive, diagnostic, and treatment measures. ‘ 

 

Source: WHO 2017 and WHO 2020 

https://www.who.int/malaria/areas/preventive_therapies/children/en/
https://www.who.int/malaria/media/malaria-vaccine-implementation-qa/en/
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Malaria control is a long-standing governmental priority, with vector control as a cornerstone of 

the government’s efforts to control malaria. Vector control activities include the provision of 

insecticide-treated bed nets (ITN) and indoor residual spraying. In 2017, 82 percent of 

households owned at least one ITN, and 42 percent of households had at least one ITN for 

every two people. 

 

Plasmodium falciparum is the most severe and the most common form of malaria in Malawi and 

the most common vector is Anopheles funestus, although An. Gambiae ss and An. Arabiensis 

may predominate in some areas at certain times of the year (Figure 13). 

 
Figure 13: Plasmodium falciparum prevalence in Malawi 

 
Notes: Continues predicted PfPR2-10 estimates for Malawi in 2010, 2012, 2014 and 2017. Ranging from yellow (low) 
to red (high) through intermediary prevalence (blue). Grey masks show areas unable to support stable transmission.: 
Source: (Gething, Patil, and Hay 2010) 

Within the Health Sector Strategic Plan II (2017-2022), the country’s fourth strategic plan for 

malaria, Malaria Strategic Plan (MSP) 2017-2022, aims to reduce malaria incidence by at least 

50 percent from a 2015 baseline of 386 per 1,000 population to 193 per 1,000 and malaria 

deaths by at least 50 percent from 23 per 100,000 population to 12 per 100,000 population by 

2022. Most of the $135 million spent on health comes from development assistance ($91 

million); $26 million comes from government health spending. The President’s Malaria Initiative 

(PMI) proposed budget for 2018 is $20 million, covering entomological monitoring and 

insecticide resistance management; ITNs; indoor residual spraying; malaria in pregnancy; case 

management; health systems strengthening and capacity building; social and behavioral change 

communication; surveillance, monitoring, and evaluation; and operational research. The other 

key development partner is the Global Fund to Fight AIDS, Tuberculosis, and Malaria. The 

National Malaria Control Programme also receives technical assistance from UNICEF, WHO, 

Save the Children, and United Purpose. Understanding how, when, and under what 
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circumstances climate variability and change impact health outcomes could offer insights on 

how to achieve these goals under a changing climate. 

OBJECTIVES 

The goal of the analyses is to describe how temperature and rainfall have historically impacted 

malaria by region in Malawi. This included a review of the incidence of malaria across the 

country at the highest possible level of resolution—in this case, the regions defined below—as 

well as a statistical analysis of the relationship between malaria and weather variables 

documented to impact malaria incidence (Parham and Michael 2010).  

 

METHODS 

Based on published associations between weather patterns and malaria, the association between 

malaria disease counts and the average temperature and precipitation was modeled. Specifically, 

the relationship between rainfall and average minimum temperature was modeled for a month 

and monthly reported total cases by each of the five regions in Malawi from January 2010 to 

September 2016. The statistical evaluation of the associations between weather variables and 

malaria cases was conducted at a regional scale and aligned with malaria case data stratified by 

age, adjusting for seasonality using a lagged generalized linear model (GLM) assuming a Poisson 

distribution as described below.   

 

INPUT DATA 

A time series analysis was conducted to estimate how monthly malaria case counts (under 5 

and over 5) vary by temperature and rainfall during the preceding weeks. This approach is often 

used in environmental epidemiology. The data are structured with monthly aggregate counts of 

total cases from reporting at the district level. Weather variables include monthly averages and 

totals at the district level. Variables in the dataset are defined in Table 2.  
 

Table 2: Climate and health variables evaluated 

Variable Definition 

region 5 regions containing districts (range: 4 – 7 districts per region) 

district 28 administrative districts 

date Date, monthly 

mal_u5 HMIS malaria cases under 5 

mal_over5 HMIS malaria cases over 5 

mean_monthly_rain Monthly average of daily rainfall (mm) 

mean_monthly_tmin Monthly average of daily minimum temperatures (°C) 

Study Period: January 2010 – September 2016. 

 

MALARIA CASE DATA 

Clinical and confirmed monthly malaria counts over the 81 months from January 2010 through 

September 2016 were reported via the Health Management Information System form 15 (HMIS-

15). Malaria data were received as monthly reports of under-5 malaria cases and 5-and-over 

malaria cases at the district level (Table 3). Counts were aggregated to the regional level for 
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analyses. Reporting rates were low between April 2011 through June 2012 and missing values 

were derived using an average of counts the year before (2010) and after (2013) the large 

missingness event, stratified by district and by month to preserve seasonality.  
 

Table 3: District level (n=28) malaria variable summary statistics over the 81 months  

Malaria Cases Mean Median Minimum Maximum Missing reports 

Under 5 years 6801 5396 12 53990 2 

Over 5 years 8153 6903 26 55110 3 

Definitions: Mean - Average district’s monthly malaria case count, Median - Median district’s monthly malaria case 

count, Min - Lowest district’s monthly malaria count, Max - Highest district’s monthly malaria count, Missing - Number 

of missing district monthly reports out of 336 possible monthly reports per year. 

 

WEATHER DATA 

Malaria transmission depends on various climatic variables, including precipitation, temperature, 

and humidity. Although there are nonclimate factors such as population, land use, and human 

immunity status that also influence transmission, this analysis examines only the relationship 

between climate and malaria incidence, as a first and critical step in determining the association 

between climate and malaria incidence. The rationale for considering rainfall and temperature 

parameters, as well as their seasonality in this analysis is described below. 

 

• Precipitation: Precipitation data are sourced from WATCH Forcing Data ERA Interim 
(WFDEI) gridded dataset (Weedon et al. 2014). Daily rainfall volume (mm) was provided 
from January 1, 1979, through December 31, 2016, at the subdistrict level to align with 
available malaria incidence data. 

• Temperature: Temperature data are sourced from WATCH Forcing Data ERA Interim 
(WFDEI) gridded dataset (Weedon et al. 2014). Daily temperature estimates (°C) were 
similarly provided from January 1, 1979, through December 31, 2016, at the subdistrict 
level.  

 

The temperature and precipitation variables were aggregated to monthly values to match the 

monthly case data.  

1. Precipitation modeled as the average rainfall (mean_monthly_rain)  

a. To produce monthly regional rainfall estimates, subdistrict daily rainfall volumes 

within each month were averaged.  

2. Temperature modeled as the average minimum temperature (mean_monthly_tmin) 

a. Produced by averaging each region’s subdistrict daily minimum air temperatures 

within each month. 

 

Rainfall 

Rainfall is a predictor of malaria transmission (cf. Parham and Michael 2010) as it can alter the 

availability of Anopheles larval habitat. Modeling studies have shown that rainfall controls 

malaria endemicity and influences vector abundance (Parham and Michael 2010). Higher 

Anopheles density and biting rates have been observed during the rainy seasons when 

compared with the dry season (Coleman 2009). This is likely due to an abundance of mosquito 
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breeding sites in the rainy season, which allow larvae to develop. In some situations, rainfall can 

lead to flooding that washes away larval breeding sites. 

 

Temperature 

As previously discussed, temperature is critical to the mosquito life cycle and the parasite’s 

intrinsic incubation rates. Higher temperatures increase larvae mutation and survival. At 

temperatures below 16°C, parasite development within the mosquito is halted (Craig et al. 

1999). Vector survival is also dependent on temperature. Between 16°C and 36°C, the daily 

vector survival is about 90 percent (Craig et al. 1999 or Patz and Olson 2006). Several studies 

have suggested that minimum temperature is the most significant meteorological factors 

involved in malaria transmission (Alemu et al. 2011, Bouma 2003, Loevinsohn 1994, and 

Rogers and Randolph 2000). In an Ethiopia-based study of malaria transmission, minimum 

temperature was most strongly positively correlated with malaria while maximum temperature 

was negatively correlated, both were significantly associated with malaria at a 1-month lag 

(Alemu et al. 2011).  

 

Seasonality 

Anopheles mosquitoes lay their eggs in water, and malaria transmission is often seasonal, 

peaking during or following the rainy season (Parham and Michael 2010). Seasonality’s long-

term pattern dominates the data and our interest lies in the short-term association between 

weather and malaria. Seasonal patterns were controlled for with a natural cubic spline. Splines 

are smoothing functions that can control for the confounding effects of seasonality’s longer-term 

variation by modeling these patterns smoothly with joined curves that cover the time period of 

interest (Gasparrini and Armstrong 2010). Logical breaks, or knots, dictate how flexible the 

curve will be by specifying how many cubic curves are used. Knots were placed in April, August, 

and December of each year (shown in Figure 14) to allow flexibility at each of these points 

where seasonal changes were observed in the data. This spline's flexible way of fitting the 

model will also control for trends not explained by precipitation and temperature and for which 

we may not have data. This may include other time-varying factors such as population size or 

the number of facilities reporting case counts to their district. 
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Figure 14: Locations of knots in analyses using natural cubic splines 

 

 

ANALYSIS IN DETAIL 

To estimate short-term, or less than seasonal, associations between monthly case counts of 

malaria and lagged weather variables, a time series analytic strategy was applied (Bhaskaran et 

al. 2013) using a generalized linear model (GLM) that assumes that monthly case counts follow 

a Poisson distribution (Zhou et al. 2011; Gasparrini and Armstrong 2010). Robust standard 

errors account for overdispersion, or an observed variance that exceeds the expected number 

of monthly malaria cases, as is common with disease count data (Gasparrini and Armstrong 

2010). 

 

A common statistical method to control for seasonality and long-term trends was applied, called 

a cubic spline for time with three knots per year (Peng et al. 2006; Hashizume et al. 2007; Singh 

et al. 2001). By filtering out trends that dominate in the data and trends that change slowly over 

time, we examined short-term variation of total cases and explanatory factors on the timescale 

of interest. Temperature was controlled for by using a cubic spline and a lag of 2 months 

(Hashizume et al. 2007; D’Souza et al. 2004).  

 

Increases in the number of cases of malaria are often not concurrent with the timing of the 

weather driver; a delay often occurs between the predictor (e.g., average temperature) and the 

health outcome. Delays may be related to the mosquito life cycle, the incubation period of the 

malaria pathogen, and the time between an individual beginning to develop the disease and 

seeking medical care to be diagnosed (Alexander et al. 2013). Including lags and shifting 

exposures in the model accounts for this delayed effect and explores the association between a 

prior month’s weather and the current month’s malaria.  

 

Confounders are variables associated with both the outcome and the exposure of interest. If no 

adjustment is made, they can bias a modeled association of interest. Time, temperature, and 

district were confounders of the association between malaria cases and precipitation.  
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In summary, model components include: 

• Malaria under/over 5 years of age (case counts) as the outcome variable 

• Precipitation, lagged 1 month 

• Temperature, lagged 2 months (adjusted for 1-month lag) 

• District indicator 

• Spline for time 

 

RESULTS 

OVERVIEW OF MALARIA CASE DATA 

On average, throughout the country, 6,801 cases of malaria under age 5 and 8,153 cases of 

malaria over age 5 were reported each month during the study period. The data were only 

missing 2 and 3 monthly reports over the study period’s 81 months, for malaria under 5 and 

over 5, respectively. The highest district-level reports for a given month were 53,990 in April 

2010 and 55,110 in March 2016, for malaria under 5 and over 5, respectively. The results of 

descriptive analyses are summarized in the following figures and tables. 

The data record shows that between January 2010 and September 2016 (6 years, 9 months or 

81 months total), there were: 

 

• 15,411,736 total reported malaria cases in people under 5 years old 

• 18,467,137 total reported malaria cases in people over 5 years old 

 

Of the approximately 33 million reported cases of malaria in the five regions of study between 

January 2010 and September 2016, the highest case counts were reported in the South East 

region, which hosts the largest population (over 4.6 million people) and registered over 4.4 

million cases of malaria in people under 5 years old (Table 4) and over 5.4 million malaria cases 

in people 5 years and older (Table 5).  

 

ANNUAL MALARIA STATISTICS 

Malaria in children under 5 years old 

The evolution of malaria in children under 5 years old shows a pattern of both increases and 

decreases across the years analyzed. These statistics point to a higher number of cases 

between 2010 and 2011, with a reduction occurring between 2012 and 2013, and a subsequent 

increase in the number of cases between 2014 and September 2016, though the changes were 

not significant. The increase is consistent with observed malaria trends in other parts of Africa 

(WHO 2018). 

 
Table 4: Malaria cases among children under 5 years old, by year, including the region-level mean, median, 

and maximum number of cases for monthly reports 

Year Total Mal Mean  Median  Min  Max  

2010 3,287,125  54,790   54,820   22,430   118,900  

2011 2,144,462  35,740   35,790   1,652   94,150  

2012 1,937,234  32,290   30,250   13,280   68,570  

2013 1,728,579  28,810   26,590   11,330   70,750  
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2014 2,282,651  38,040   31,830   13,660   84,790  

2015 2,186,224  36,440   29,470   12,780   70,380  

2016 1,845,461  41,010   31,640   8,528   99,290  

 

A regional perspective is offered in Figure 15, again for the number of malaria cases by year for 

children under 5 years of age and over five years of age. As the figure shows, the South West 

and North regions have historically registered the lowest numbers of cases, while the South 

East bears the greatest burden of malaria cases. Population alone can’t explain these results. 

Although the South East has the largest population, the North and South West have similar 

numbers of cases but with very different population sizes (the North has about 33 percent more 

people than the South West). 
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Figure 15: Total malaria cases among a) children under 5 years old, and b) 5 years of age and older by year 
and region of analysis 

 

 

Malaria in persons 5 years of age and older 

A similar pattern of outbreak followed by a decrease and then a subsequent increase is 

apparent in the malaria cases for persons 5 years of age and older, both at the district (Table 5) 

and the regional level (Figure 15) 

 

Table 5: Malaria cases among people 5 years and older, by year, including the region-level mean, median, 
and maximum number of cases for monthly reports 

Year Total Mal Mean  Median  Min  Max  

2010  3,559,023 59,320 55,760  29,630  125,500 

2011  2,770,286 46,170 44,650  17,720  100,800 

2012  1,952,523 5,828  4,901  135  24,070 

2013  1,943,399  5,801  5,213  148  24,890 

2014  2,786,881  8,294  7,246  212  38,450 

2015  2,759,495  8,213  7,352  92  40,020 

2016  2,695,530  10,700  8,464  256  55,110 

 

MONTHLY MALARIA STATISTICS 

Figure 16 shows precipitation, temperature, and malaria cases by age group (less than 5 years 

and 5 years and older over the period 2010-2016). Precipitation shows the expected seasonal 

pattern, with a high year-to-year variability. Visually, the annual peak in malaria cases tends to 

occur during months with higher amounts of precipitation (January – April). A similar pattern is 

observed for temperature, with a suggestion that temperatures rise just before a peak in malaria 

cases. This is expected because there is a lag between warmer temperatures and malaria 

transmission (see Figure 16). The time series also show the clear seasonality of cases. The 

number of malaria cases were higher in 2010–2011, then fell for the next two years, before 

rising again in 2014–2016.  
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Figure 16: Time series plots for outcomes and exposures of interest over the study period, including a) 

precipitation, b) temperature, c) malaria cases in children less than 5 years of age and d) malaria cases in 

children 5 years and older 

Seasonal patterns are apparent for both age groups, though the timing is shifted by age group 

as shown in Table 6 and Figure 17. Among children under 5, malaria cases peak in January 

with the lowest counts in August each year, on average. Peaks correspond to the highest 

rainfall values experienced during the season (January) and lowest values during the dry period 

(August), suggesting a high degree of sensitivity to the rainy season dynamics for children 

under 5. Among those 5 and over, malaria cases peak slightly later, toward the end of the rainy 

season (April), with the lowest counts corresponding to the start of the rains in November each 

year.   

a 

b 

c 

d 
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REGIONAL SEASONALITY 

Malaria seasonality is very similar across the five regions, with year-to-year variability. All 

regions have their lowest counts in August of each year on average (Figure 18). Most regions 

exhibit strong seasonality, with approximately 2–3 times the number of cases in the peak of the 

season as compared with August. This is especially prominent in the Central West region, which 

decreases from more than 15,000 cases per month on average in March and April to nearly 

5,000 cases on average in August.  

Table 6: Total malaria cases reported during 
each month of the study period by age group 

 

Month  Malaria <5 
years 

Malaria 5+ 
years 

January  1,874,735  2,183,421 

February  1,749,809  2,105,490 

March  1,833,151  2,333,351 

April  1,739,628  2,350,799 

May  1,547,173  1,922,378 

June  1,309,194  1,457,905 

July  990,694  1,128,144 

August  823,478  985,680 

September  850,908  1,004,849 

October  893,480  1,023,017 

November  839,718  960,620 

December  959,771  1,011,485 
 

Note: Yellow highlights the highest values, green 

highlights the lowest values. 

Figure 17: Total malaria cases in children under age 5 and 5 
and older, by month, January 2010 – September 2016 
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Figure 18: Mean malaria reports by month in each region, stratified by age 

  

Central East Region 

Central West 

North Region 

South East Region 

South West Region 
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In general, the South West region experiences the highest summer maximum temperatures 

(about 22°C) and the highest minimum temperatures (about 15°C) in the winter (Figure 31). The 

Central West region has nearly the opposite pattern, experiencing lower maximum temperatures 

in the summer (about 19°C) and the lowest minimum temperatures in the winter (about 12°C), 

although, as the values show, the differences between these regions are not large. The 

temperature patterns for the other regions fall between these two. 

 

Precipitation is strongly seasonal, with the highest rainfall around December to January (Figure 

19). In general, the South East region receives more precipitation than the other regions, 

although that was not the case in 2016. 

 
Figure 19: Mean precipitation and Mean temperature by region, January 2010 – September 2016 
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STATISTICALLY SIGNIFICANT ASSOCIATIONS BETWEEN MALARIA AND WEATHER 
VARIABLES 

The associations between weather variables and malaria incidence were conducted using 

incidence rate ratios (IRRs) and mean daily precipitation and minimum temperature. These are 

summarized in the subsequent tables, under which: 

• IRRs denote the change in malaria cases for each 1 mm difference in mean daily 
precipitation and each 1°C difference in mean monthly Tmin. 

• Std Err is standard error. 

• The lower (L) and upper (U) 95 percent confidence intervals (CI) also are shown 

• Note that mean precipitation is lagged 1 month, adjusted for unlagged precipitation and 
temperature, and mean Tmin is lagged 2 months, adjusted for a 1-month lag, unlagged 
Tmin, and precipitation. 

 
An interpretation example of these tables is presented below. 

 
• Malaria 5 and over South West Region Precipitation—IRR = 1.033: When mean daily 

minimum temperature (2-month lag) is held constant, the model estimates that, for each 
1 mm difference (increase or decrease) in mean daily rainfall during the month prior, 
there is a 3.3 percent (95 percent CI: 1.7 – 4.8 percent) difference (concurrently 
increased or decreased) in malaria case counts among people 5 years of age and older, 
controlling for seasonality and district, with the group with higher rainfall having higher 
malaria case counts. 

 

Table 7 shows statistically significant relationships between mean daily precipitation and 

childhood malaria in children under 5 years old in the South East and South West, with a 1.7 

percent increase in malaria in the South East for each 1 mm increase in mean daily 

precipitation, with a 2-month lag. The increase for the South West is 2.3 percent. Malaria 

decreases in the North with an increase in temperature. When mean daily temperature 

increases (2-month lag), there is a statistically significant increase in malaria in the South East 

of 3.8 percent. All other results are nonsignificant. 

 

Table 8 shows statistically significant relationships between mean daily precipitation and malaria 

in people 5 years of age and over in the South East and South West, with a 1.6 percent 

increase in malaria in the South East for each 1 mm increase in mean daily precipitation, with a 

2-month lag. The increase for the South West is 3.3 percent. All other results for temperature 

and precipitation are nonsignificant. 
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Table 7: Malaria analyses in children under 5 years of age.  

Predictor Region IRR* 
Percentage 
change Std. Err. 

95 percent 
CI L 

95 percent CI 
U 

Mean daily 
precipitation 

Central East 1.012 
 

0.010 0.993 1.031 

Central West 1.013  0.013 0.987 1.040 

North 0.960  0.015 0.933 0.989 

South East 1.017 1.7 percent 0.006 1.005 1.029 

South West 1.023 2.3 percent 0.008 1.008 1.039 

Mean daily    
Tmin 

Central East 1.026  0.027 0.974 1.081 

Central West 1.008  0.025 0.960 1.059 

North 1.025  0.023 0.980 1.073 

South East 1.038 3.8 percent 0.017 1.003 1.074 

South West 1.035  0.020 0.995 1.076 

 

Table 8: Malaria analyses in persons 5 years of age and older 

Predictor Region IRR* 
 

Std. Err. 
95 percent 
CI L 

95 percent CI 
U 

Mean daily 
precipitation 

Central East 1.007 
 

0.010 0.987 1.026 

Central West 1.017  0.015 0.988 1.047 

North 0.980  0.015 0.951 1.009 

South East 1.016  0.006 1.005 1.028 

South West 1.033  0.008 1.017 1.048 

Mean daily   
Tmin 

Central East 1.027  0.026 0.975 1.081 

Central West 0.979  0.028 0.926 1.034 

North 1.019  0.024 0.972 1.068 

South East 0.996  0.018 0.963 1.031 

South West 1.029  0.018 0.994 1.065 
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CLIMATE CHANGE IN MALAWI 

APPROACH 

An ensemble of 19 Regional Climate Model (RCM) projections from the Coordinated Regional 

Climate Downscaling Experiment (CORDEX) over the African Domain are used. The ensemble 

is made up of five Regional Climate Models (CLMcom-CCLM4-8-17, DMI-HIRHAM5, KNMI-

RACMO22T, MPI-CSC-REMO2009 and SMHI-RCA4) where each model was driven by up to 

nine different Global Climate Models from the CMIP5 project using the historical, the RCP 4.5 

and RCP8.5 experiments. 

 

The CORDEX project provides daily maximum and minimum temperature. This has been 

converted to daily mean temperature and processed to form monthly climatologies for the 

historical period (1986-2005) and future period (2020-2039) under the RCP 4.5 and RCP 8.5 

emission scenarios. These models have some biases in their temperatures (some models are 

warmer or cooler than reality), therefore future anomalies rather than the absolute values 

projected by the models were used. The future anomalies were calculated by differencing the 

future climatologies from the historical climatology. These anomalies were then added to the 

WFDEI -SRTM observed climatology. The spatial resolution of the CORDEX data was ~50 km, 

therefore the data were regridded to the 0.05-degree resolution of the WFDEI SRTM dataset 

using bicubic interpolation. It is important to note that this process is not the same as the 

process of interpolation of historical data that included elevation as a co-variate. Here, 

temperature anomalies (future-past change) rather than temperature itself are interpolated. 

Unlike with air temperature, there is no basis to consider that temperature anomalies are related 

to surface elevation. As a result, elevation is not considered as a co-variate here. 

 

Climate model projections from Couple Model Intercomparison Project (CMIP5) are presented 

below. Both Representative Concentration Pathways (RCP) 4.5 and 8.5 are presented. RCP 8.5 

represents a weak mitigation future, while RCP 4.5 represents a much more aggressive 

KEY MESSAGES 

Temperature 

• Daily and yearly temperatures (average, maximum and minimum) will rise and these increases are 
statistically significant even as early as the 2020s. 

• Average temperatures will increase between 1.5 to 6 ºC by 2100 under all scenarios evaluated.  

• Maximum temperatures are projected to rise between 1-7 ºC by 2100. 

• The warming rate is similar across all regions with no one region projected to warm faster than another. 

Rainfall 

• Most models project a decrease in the number of rain days per year before the 2050s, representing an 
opposite direction of change in the trends observed. 

• Projected changes in total and monthly rainfall are uncertain, and there is no agreement in the sign of 
the change between models, some show statistically significant increases and others statistically 
significant decreases. 

• Seasonally, most models show a statistically significant reduction in rain days, with the worst-case 
scenario (RCP 8.5) pointing to a potentially later start in the rainy season across all regions in Malawi. 
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mitigation future though still not in line with the 2016 Paris Agreement objectives, which aims to 

limit temperature increase to 1.5ºC. The CMIP5 ensemble are global models with varying spatial 

resolutions and hence varying representations of the significant topography and water bodies of 

Malawi and so their ability to capture local scale process is limited. However, one would expect 

them to represent regional shifts in moisture transport, sea surface temperatures (SSTs), and 

large-scale rainfall changes.   

TEMPERATURE 

Differences between the baseline and projected yearly mean of daily mean temperature are 

statistically significant for all three climatological (rainfall) regions under both RCPs as early as 

the 2020s (Figure 20). The magnitude of the increase of daily mean temperature under RCP 4.5 

is between 1.5 and 3.5 ºC and under RCP 8.5 the warming is between 3 and 6 ºC by 2100.   

Figure 20: Projected changes in the yearly mean of daily mean temperature between 2005-2100 under RCP 

4.5 (top) and RCP 8.5 (bottom). 

 

INTERPRETING PLUME PLOTS 

The solid straight line is the mean value of the reference period (1986-2005) based on the WFDEI data. Each 

thin colored line represents the change from the reference period from 2005 of a single model realization with its 

95 percent confidence interval. The 95 percent confidence interval provides a range of values that are 95 

percent likely to encompass the true value and so provides a statistical measure of confidence that the result is 

realistic. Each line represents a 20-year running mean as a departure from the reference period. When a line 

changes from blue to red this means, at that time, the change from the reference period becomes statistically 

significant for that model. If a line tracks below the reference period, that model is projecting a drier climate for 

the region compared to the reference period, and if it changes from blue to red, the change is statistically 

significant. 
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Statistically significant increases in the yearly mean of daily maximum temperature are also 

projected for all three regions under both RCPs well-before the middle of the century (Figure 

21). The magnitude of the increase of daily maximum temperature under RCP 4.5 is between 1 

and 4 ºC and under RCP 8.5 the warming is between 2 to 7 ºC by 2100.  

 
Figure 21: Projected changes in the yearly mean of daily maximum temperature between 2005-2100 under 

RCP 4.5 (top) and RCP 8.5 (bottom). 
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The warming rate is similar across all three regions with no one region projected to warm faster 

than another. Similarly, projected increases in the yearly mean of daily minimum temperature 

(Figure 22) are significantly different from the reference period before the middle of the century 

with between 1 and 3 ºC increase under RCP 4.5 and 2.5 to 6 ºC increase under RCP 8.5.  

 
Figure 22: Projected changes in the yearly mean of daily mean minimum temperature between 2005-2100 

under RCP 4.5 (top) and RCP 8.5 (bottom). 
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ANNUAL RAINFALL 

Across the ensemble of models, relatively few models show statistically significant changes in 

total annual rainfall before mid-century in RCP 4.5, although this number increases under RCP 

8.5 (Figure 23). However, in all three regions under both RCPs there is no agreement in the 

sign of the change between models, some show statistically significant increases and others 

statistically significant decreases. Other models indicate no change in total annual rainfall until 

2100. The projected change in total annual rainfall is therefore uncertain. 
 

Figure 23: Projected changes in total annual rainfall between 2005-2100 under RCP 4.5 (top) and RCP 8.5 

(bottom). 
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While projected changes in total rainfall are uncertain, most models project a decrease in the 

number of rain days per year before mid-century in both RCPs (Figure 24). Under RCP 8.5 a 

larger number of models show statistically significant changes and project a larger decrease in 

the number of rain days. Interesting this represents the opposite direction of change from the 

trend analysis for the same variable, although the historical trend of increasing rain days is not 

statistically significant. 

Figure 24: Projected changes in number of rain days between 2005-2100 under RCP 4.5 (top) and RCP 8.5 

(bottom). 
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SEASONAL RAINFALL 

As rain days (days with rainfall greater than 1mm) are a significant predictor of malaria 

transmission, it is considered important to disaggregate the annual projections into seasonal 

projections of change. Furthermore, the rainy season is of most relevance to malaria. This 

incorporates the months of September, October, November (SON) and December, January, 

February (DJF). These two seasons are shown in Figure 25 and Figure 26 for RCP 4.5 and 8.5 

respectively.   

 

Under RCP 8.5 (Figure 26), most models show a statistically significant decrease in rain days in 

the SON and DJF period by the end of the century. However, this decrease in seasonal rain 

days is not clearly present under RCP 4.5 (Figure 25). The drying present in both seasons 

under RCP 8.5 indicates a possible drying of the entire rainy season, including a potentially later 

start to the rainy season in all three regions. This drying becomes statistically significant by mid-

century. 
 
 

Figure 25: Projected seasonal changes in number of rain days between 2005-2100 under RCP 4.5 in 

September, October, November (SON) (top) and December, January, February (DJF) (bottom) 
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Figure 26: Projected seasonal changes in number of rain days between 2005-2100 under RCP 8.5 in 

September, October, November (SON) (top) and December, January, February (DJF) (bottom) 

 

 
 

A better understanding of the skill and value of information resulting from climate modelling will 

inform climate inputs into disease modelling initiatives, ultimately helping to inform health 

programming and policies. This contributes towards the goal of disease elimination by informing 

modification of current interventions and programs and implementing new ones that can 

adaptively respond to changing climate conditions 
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MALARIA IN A HOTTER CLIMATE 

Shifts in both the areas and populations exposed to malaria risks will require a change in the 

portfolio of responses to address those risks. Many countries with a high burden of malaria 

already have weak surveillance systems and are not able to assess disease distribution and 

trends, making it difficult to optimize responses and respond to outbreaks. The following 

analysis offers insights for programming decisions by exploring six scenarios of changing 

suitability. Not all potential scenarios of change were evaluated; rather, these scenarios 

highlight the changing profile of risk across the region but could be expanded to include other 

shifts, such as from endemic or seasonal to marginal or moderate suitability.   

 

METHODS 

Areas of malaria suitability were mapped in a model combining future temperature change 

projections and current knowledge about the life cycles of malaria-carrying mosquitoes and the 

malaria parasite. Malaria suitability was examined across two future time periods: the 2030s 

(representing the period between 2015 and 2044), and the 2060s (representing the period 

between 2045 and 2074). Details of the methodological approach are available in the Shifting 

Burdens: Malaria Risks in a Hotter Africa report. 

 

The analysis of vector suitability considering future temperature projections is based on an 

empirical modeling methodology (see box below). The method of Ryan et al. (2015) is 

extended, applying the model from (Mordecai et al. 2013) to climate model layers (described in 

Figure 27: Summary of Analysis Parameters 

KEY MESSAGES 

• An estimated 14million people in 2010 were living in areas of risk for 1 or more months of transmission 
suitability in Malawi. Of these, a third (4.8 million, 35 percent live in areas suitable for seasonal (7-9 
months) transmission. 

• In all projected future scenarios, the largest portion of people at risk (ranging 46-77 percent are at seasonal 
(7-9 months) risk, suggesting a shift toward more seasonal transmission risk from the baseline.  

https://www.climatelinks.org/sites/default/files/asset/document/2019_USAID_ATLAS_Shifting%20Burdens.pdf
https://www.climatelinks.org/sites/default/files/asset/document/2019_USAID_ATLAS_Shifting%20Burdens.pdf
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Input Data below). All calculations are conducted in R [3.5.0], using the “raster,” “rgdal,” “sp,” 

and “maptools” functions, and mapped output is produced in ArcGIS (Version 10.5.1).  

 

INPUT DATA 

• CORDEX Experiment information under two Representative Concentration Pathways 

(RCPs)—RCP 4.5 and RCP 8.5—for two future time periods: the 2030s and the 2060s 

(see box). Two future climate models were selected for comparison to represent the 

range of possible outcomes within the available regional climate models – a ‘hotter’ 

future using WFDEI_SRTM_AFR-44_CNRM-CERFACS-CNRM-

CM5_rcp45_r1i1p1_SMHI-RCA4_v1 and a ‘less hot’ future with the 

tair_mon_mean_clim_WFDEI_SRTM_AFR-44_MOHC-HadGEM2-

ES_rcp45_r1i1p1_CLMcom-CCLM4-8-17_v1 Model as described in Shifting Burdens: 

Malaria Risks in a Hotter Africa.  

• Countries of Africa are derived from a shapefile of the database of Global Administrative 

Areas (GADM). The Southern African region is defined based on a previous report 

Shifting Burdens: Malaria Risks in a 

Hotter Africa.  

• To exclude arid areas that preclude 

Anopheles development, the Moderate-

Resolution Imaging Spectroradiometer 

(MODIS)-derived normalized difference 

vegetation index (NDVI) values for 

2016 and 2017 are used to create an 

“aridity mask,” as described below.  

• Population data used as input to the 

calculations are derived from the SSP2 

Shared Socioeconomic Pathways 

project (Jones and O’Neill 2016). 

Baseline calculations used 2010 data, 

while projected populations are 

extracted from the 2030 and 2050 

layers as explained in the methodology 

below.  

 

MODEL DESCRIPTION 

Malaria transmission suitability model. Using the mechanistic model mentioned above 

(Mordecai et al. 2013, Mordecai et al. 2017), R0, the metric for transmission suitability, scaled 

from 0 to 1, is described in quantiles. The top quantile (top 25 percent) of the curve is selected 

to represent the range of temperature in which transmission suitability is expected. This 

conservative measure of the overall temperature curve is used because it was previously shown 

to correspond visually to existing maps of ongoing transmission, under current temperatures 

(Ryan et al. 2015). Using this “most suitable” quantile, this temperature range is incorporated 

into projections of suitability, as described in the following sections.  

EXAMINING IMPACTS FROM FUTURE 
TEMPERATURE RISE USING SCENARIOS  

 

To explore how the planet might change in the 

future, considering emissions, climate, 

environmental change, and vulnerability, the 

Intergovernmental Panel on Climate Change uses 

scenarios, termed Representative Concentration 

Pathways (RCPs). 

 

These include: RCP 4.5 and RCP 8.5. The 

numbers refer to radiative forcing, a measure of the 

impact of greenhouse gases in the atmosphere on 

the Earth’s normal energy balance.  

 

This information is translated through models of 

climate dynamics and used to project increases in 

temperature because of increased greenhouse 

gases. 

https://www.climatelinks.org/sites/default/files/asset/document/2019_USAID_ATLAS_Shifting%20Burdens.pdf
https://www.climatelinks.org/sites/default/files/asset/document/2019_USAID_ATLAS_Shifting%20Burdens.pdf
https://www.climatelinks.org/sites/default/files/asset/document/2019_USAID_ATLAS_Shifting%20Burdens.pdf
https://www.climatelinks.org/sites/default/files/asset/document/2019_USAID_ATLAS_Shifting%20Burdens.pdf
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RESULTS 

The regional patterns of malaria suitability in Malawi point to seasonal transmission 

concentrated in the Shire basin and along the shores of lake Malawi, with Moderate and 

Marginal suitability in the other regions of the country (Figure 28). In the baseline of 2010 used, 

an estimated 14 million people were living in areas of risk for 1 or more months of transmission 

suitability in Malawi, with around a third (4.8 million, 35 percent) living in areas suitable for 

seasonal (7-9 months) transmission.   

 

  

 

Figure 28: Current suitability for temperature driven malaria transmission in Malawi 
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PROJECTED CHANGES IN DETAIL 

Shifts in both the areas and populations exposed to malaria risks will require a change in the 

portfolio of responses to address those risks. The following analysis offers insights for 

programming decisions by exploring three scenarios of changing suitability. Not all potential 

scenarios of change were evaluated; rather, these scenarios highlight the changing profile of 

risk across Malawi. The three scenarios of changing suitability are described below, and the 

findings summarized in Table 9, Figure 29, and Figure 30. 

 

New areas of malaria suitability 

1. Where and when are new areas of seasonal suitability going to emerge where 

malaria was previously unsuitable? How many people are at risk from this change?  

 

Areas where the malaria season will be extended  

2. Where and when will seasonal areas become endemic? How many people are at 

risk from this change? 

3. Where and when will moderately or marginally suitable areas become seasonal? 

How many people are at risk from this change?  

 
Table 9: Detailed results of projected changes examined including projected population growth 

Change in suitability 

 

Where will this 

happen? 

 

How many people are at risk? 

New areas of 
seasonal malaria 
suitability 

By the 2030s, in the southern 
region near the Shire valley 
and the central rift valley 
region. 
By the 2060s, extending 
throughout the rift valley and 
into the north. 

Under the hotter scenario, in 2060, and at RCP 8.5, we 
see 815,449 people newly at seasonal (7-9 months) of risk 
where there is currently no suitability; however, in all other 
future climate scenarios there are no novel seasonal areas 
arising. 

Areas where malaria 
season will be 
extended (seasonal 
→ endemic) 

In the northern region. 

We find that only under RCP 8.5 in 2030 and 2060 for the 
cooler future scenario are there changes from seasonal to 
endemic areas in Malawi; in 2030, this creates novel risk 
for 26,617 people, and in 2050, for 33,094 people. 
 (Figure 29). 

Areas where malaria 
season will be 
extended 
(moderate/marginal 
→ seasonal) 

Most changes in Malawi 
occur in this category, for 
reference on spatial changes, 
see Figure 29  

• Under the ‘cooler’ future scenario, the total number of 
people living in areas of seasonal (7-9 months) 
transmission will rise to between 25.1 and 25.2 million 
in 2030 (RCP 4.5 and RCP 8.5), and to 39 million in 
2060.  

• Under the ‘hotter’ future scenario, this will rise to 25.5 
million people at risk by 2030, and 39.5 million by 2060. 
In all projected future scenarios, the largest portion of 
people at risk (ranging 46-77 percent) are at seasonal 
(7-9 months) risk, suggesting a shift toward more 
seasonal transmission risk from the baseline.  
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Figure 29: Areas currently moderate or marginally suitable (1-6 months) which become seasonally suitable (7-9 

months) under RCP 4.5 and RCP 8.5 for 2030’s and 2060’s time horizons, for A. a less hot future; and B. a hotter 

future 
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A 

B 

Figure 30: Number of people newly at risk as moderate and marginal (1-6 months) become seasonally 

suitable for transmission (7-9 months), for RCP 4.5 and 8.5, in the 2030’s and 2060’s time horizons, for A. the 

hotter model; and B. the less hot model 
A 

Less Hot Less Hot Less Hot Less Hot 
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INSIGHTS AND 
RECOMMENDATIONS 

With malaria as the third most common cause of death in Malawi (Malawi National Health 

Sector Strategic Plan 2017-2022), it is important that Malawi’s health policies and planning 

consider the possibilities of shifting malaria suitability under a changing climate. Neither the 

National Health Policy (2012) nor the Health Sector Strategic Plan mention climate or climate 

change or any associated risks to malaria or other climate/weather-related diseases such as 

cholera. 

 

INSIGHTS FROM THE ANALYSIS 

The analyses show the seasonality of malaria in Malawi, with most cases occurring in the Jan-

Apr period for both children and adults. The analyses also show an overall decline in malaria 

cases, but the decline is not continuous, with some years showing an increase in the number of 

cases. These results are consistent with what is reported in the 2017 Malaria Indicator Survey 

(NMCP 2017). 

 

The statistical analyses showing associations between malaria and mean daily temperature and 

precipitation offer insights on the role of weather driving malaria caseloads. Although the 

incident rate ratios are relatively small, there are statistically significant associations for children 

under five between temperature and malaria in the South East, and between precipitation and 

malaria in the South East and South West, with incidence increasing as both temperatures and 

precipitation increase. There also is a significant association between mean daily precipitation 

and malaria in people 5 and older in the same regions (South East and South West). 

Furthermore, because the malaria data are monthly counts, it is highly likely that the actual 

associations are stronger because the within month variability of weather variables and 

outcomes cannot be analyzed.  

 

Figure 31 shows how early warning systems combined with surveillance can provide longer lead 

times for control programs (Morin et al. 2018). The figure shows the theoretical epidemic curve 

representing no surveillance (pink curve) compared with passive surveillance3 (red curve) and 

response (top panel). Integrating an early warning system (blue curve, middle panel) shows the 

possible improvement in the timeliness of surveillance, detection, and response. When only 

using passive surveillance (top panel), the first cases are detected only after enough 

transmission leads ill individuals to seek medical attention and get tested for the pathogen, and 

health care providers report positive results. An early warning system, with forecasts of high-risk 

conditions, provides additional time to plan, organize, and initiate screening or active 

 

3 Passive surveillance is the regular reporting of disease data by all institutions that see patients (or test specimens) and are part of 
a reporting network. There is no active search for cases. It involves passive notification by surveillance sites; reports are generated 
and sent by local staff.  
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surveillance, reducing the number of cases overall and the magnitude of the outbreak. This also 

can reduce the time between detection and response. The steps and connections within an 

early warning system are shown in the bottom panel.  

 

Figure 31: A theoretical view of how early warning systems could reduce disease loads 

 
Source: Morin et al. 2018 

 

The results suggest that a combination of temperature and precipitation for the South East and 

South West regions could be used to forecast the timing of malaria outbreaks with at least a 1- 

to 2-month lead time. Such an early warning system could increase the effectiveness, efficiency, 

and timeliness of malaria control efforts, which is particularly important given the recent increase 

in the number of cases and the significant progress needed to reach the goals for reducing the 

burden of malaria by 2030.   
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RECOMMENDATIONS 

Addressing the changing risk profile of malaria due to temperature increases combined with 

other drivers will require modifying current interventions and programs, and potentially 

implementing new programs, that can adapt and respond to changing climate conditions. With 

these challenges come opportunities for improving observations, surveillance, and responses, 

including detailed geographic targeting, optimizing strategies (i.e., finding the right combination 

of vector and case management), and aligning interventions to changing seasonality. Some of 

the implications for action and decision-making of this research are discussed below. 

 

MEETING ELIMINATION TARGETS 

Eliminating malaria is the goal of all development partners working in Africa (WHO 2015). 

Understanding how temperature may change the seasonality of malaria in Southern Africa, 

particularly for new areas at risk of malaria transmission or areas where the length of the 

season may shorten or extend, can help inform malaria programs and policy and help reach the 

goal of elimination. In areas where the months of malaria suitability decrease, surveillance and 

response systems should be strengthened to identify, track, and respond to malaria cases and 

any remaining transmission foci (e.g., infected mosquitoes or affected patients). Elimination 

efforts informed by these analyses could better target resources to reduce the potential burden 

of additional cases through timely treatment and prevention, such as the distribution of bed nets 

or indoor residual spraying. 

 

ADAPTING TO CHANGING EPIDEMIOLOGY AND INCORPORATING NEW ANALYTICAL 
TOOLS 

There are many examples across sub-Saharan Africa where investments have shown marked 

progress in malaria control strategies. These gains, however, could be compromised if future 

investments do not consider the role of rising temperatures in changes to epidemiology. This 

analysis offers critical insight with respect to these risks. Especially how current management 

and control interventions may need to be reviewed and revised to address likely changes in 

malaria incidence. This information offers an evidence base to support lengthening the 

investment timeframe (seasonal to year-round, or vice versa), optimizing vector control, and 

improving case management. Targeted and concentrated surveillance at the edge of malaria’s 

range, for example, presents an opportunity to focus on potential epidemic outbreaks as they 

happen and can reduce the risk of new outbreaks. 

 

IMPROVING A COUNTRY’S CAPACITY FOR COLLECTING AND USING INFORMATION 

Significant progress has been made to improve data and information available for malaria 

programming, management, and evaluation via investments in strengthening routine disease 

reporting and health management information systems. Nevertheless, challenges remain, 

including the need to increase reporting rates and shorten the time before reporting data are 

available to inform planning and monitoring to near real-time.   

 

Understanding how rising temperatures could impact vector ranges, and thus have the potential 

to alter disease dynamics, is an important first step in building the knowledge base to evaluate 

the impact of climate on malaria incidence and to inform investments. This analysis indicates 

that as temperatures rise, even within the next 11 years (by the 2030s), important changes are 
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anticipated in transmission suitability. For example, in some areas in the northern part of the 

Southern Africa region, temperatures are expected to exceed the thermal limit of mosquitoes’ 

tolerance, reducing the months of malaria suitability. At the same time, some areas of Southern 

Africa will become newly viable for Anopheline survival, raising the risks to people living there. 

Importantly, temperature-driven changes in vector dynamics are themselves mediated by direct 

and indirect environmental and societal factors. The same temperature changes that affect 

vector dynamics also influence changes to ecosystems, land use, and other factors that may 

reduce or increase the vulnerability of certain groups to malaria risks. The bottom line is that the 

environmental and social factors that define malaria incidence and risk are complex. 

 

New methods of data collection, integration, and analysis will help explain the complex links 

between these factors. Public health observatories, many already operational around the world, 

offer a mechanism for analysis of health data in context with other climate and environmental 

parameters, paving the way for the timely use of remotely derived weather and climate 

information to inform investments and strategies in malaria control. In general terms, health 

observatories are virtual platforms that can link health systems to weather data, supporting 

health policies and planning. According to the WHO (2016), the purpose of health observatories 

“vary but the major objectives are: monitoring health situations and trends, including assessing 

progress toward agreed-upon health-related targets; producing and sharing evidence; and, 

supporting the use of such evidence for policy and decision making.” Integrating weather data 

and climate analysis is consistent with these overarching objectives. 

 
Establishing a health observatory in countries where PMI is working could help scale up 

interventions, fine-tune investments focused on improving the timeliness and completeness of 

surveillance during critical periods, and: 

 
• Build a community of practice on malaria—Communities of practice beyond traditional 

PMI partners could explore the links between environmental parameters of interest 
(including weather and climate) and strategic and programmatic decisions that need to 
be made in a malaria program. 

• Further research on critical questions that remain about using climate information to 
inform malaria planning—This research includes, but is not limited to, understanding 
more fully the links between increased temperature, changing rainfall patterns, extreme 
weather events, and malaria incidence; determining specific climatic thresholds of 
concern for surveillance; and improving analytic tools to visualize cross-sectoral 
information. 

• Formalize interdepartmental links and data sharing —To further research and monitoring 
to better understand climate and weather impacts on epidemiology, it is essential to 
have access to historical climate and trend information, together with the health data 
related to past events. Furthermore, most government agencies lack the mandate to 
coordinate interactions between the many stakeholders in the health sector. Improved 
communication and coordination across the sector will facilitate more widespread use 
and understanding of the information available for planning. 
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BUILDING CAPACITY IN HEALTH SYSTEMS 

In order for malaria programming and health services to respond to climate risks, investments 

need to be made in building the skills and capacity of health workers to understand and address 

the health risks posed by climate. These include: 

 

• Leveraging information technology such as GIS and other tools to integrate 
information from various sectors and sources in order to rapidly evaluate the potential 
risks from specific weather events to a country, region, or health post. 

• Streamlining supply chain management, especially in countries where malaria control 
interventions have been successful, to guarantee the delivery of commodities and 
services for remote and mobile populations. 

• Ramping up research on applied, regionally responsive health services for a future of 
climate change. To date, there is a clear lack of service-oriented research to drive 
regional health service development for climate change, with potentially serious adverse 
implications for future control efforts.  

 
STRATEGIC BUDGETING AND EARLY AND TARGETED PLANNING 

One of the core operating principles of many malaria intervention programs and for PMI is 

prioritizing high-risk populations for malaria interventions. This analysis indicates that 

temperature may play a role in putting large percentages of populations within countries, and in 

the region overall, at risk of both seasonal and endemic malaria. 

 

In many instances, information on projected temperature increases is criticized because it 

cannot address immediate disease planning needs. However, much like preventive medicine, 

which aims to promote long-term well-being, planning 10–12 years and even further into the 

future when fighting malaria can save lives and money over the long term and promote 

sustainable elimination efforts. For example, if we know that temperature is likely to increase 

malaria burden in a certain country or region where there is currently little investment to fight 

malaria, including in some Southern Africa countries, an investment in surveillance and 

prevention now could avoid the need for large, immediate, crisis-driven investments in the 

future.   
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